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ABSTRACT 

Today we find ourselves overwhelmed with information, and are faced with the challenge of 

how to input data into the human mind faster and more effectively.  Visual display devices such as 

those found in television and computer displays are the most common method we use to get new 

information.  One medium that is very effective, but not as common as visual presentation, is 

audio.  Audio represents yet another channel of information that the human brain can easily 

perceive, and can even be processed in parallel to other channels such as visual, touch or smell.  A 

subset of audio presentation methods that are useful is non-speech audio, such as sounds from 

music, sound effects, or warning tones.  Non-speech audio may also be desirable when presenting 

many elements of data at one time.  Examples of this can be found when simulating virtual 

environments such as three-dimensional games, or scientific simulations such as the visualization 

of genetic data.  The audio needs for these kinds of applications can be met through the 

application of audio synthesis techniques.  Audio synthesis is the field that investigates methods to 

generate and manipulate arbitrary sound in response to user input or data events.  Until recently 

audio synthesis capabilities have been confined to specialized real-time hardware devices, or non 

real-time (offline) rendering on generic personal computers.  In the last few years, personal 

computers capable of performing audio synthesis methods with real-time response are now 

affordable and commonplace.  As personal computer technology advances, specialized real-time 

audio synthesis applications are becoming available.  However, most of these applications are 

customized to specific software and hardware.  These PCs we speak of run soft real-time operating 

systems such as Windows, Linux, Irix, and OSX.  Real-time audio synthesis on these systems is 

possible, and several specialized implementations exist.  One problem with custom solutions are 

limitations in scalability which affect how many simultaneous sounds can play, extensibility 

which affects how a user can add custom extensions to the synthesis tool, portability which affect 

what hardware the synthesis software can be run on, and generality which affect what types of 
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synthesis methods one can choose.  Alternatives to custom specialized tools are emerging that 

allow synthesis of interactive and arbitrarily specified sound.  We present a new audio synthesis 

toolkit, called “Subsynth”, to facilitate building system independent and arbitrary audio synthesis 

components that are intended for use in real-time applications.  To achieve this usability, Subsynth 

provides a cross platform and extensible software design.  Subsynth runs in software on the same 

PC or workstation as the application that uses it.  Applications use Subsynth through the C++ 

programming language.  This thesis focuses on the approach taken to specify, design, and 

implement Subsynth as well as the benefits derived from this approach. 
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CHAPTER 1 INTRODUCTION 

Research Problem 

The sound processing power of computers has significantly increased in recent years to the 

level that most personal computers can store, reproduce, and transmit sound in digital format, i.e. 

digital audio.  The process of generating and manipulating digital audio is usually referred to as 

digital sound synthesis.  Synthesized sounds can be generated from existing sounds or from 

mathematical and physical models.  Current digital audio capabilities in computers are enabling 

the possibility to create original sounds, mimicking existing instruments and voices, and creating 

sonic environments.  These synthesized sounds are being used in many application domains; For 

example, virtual environments use synthesized sound to give users feedback about the state of 

virtual objects, or create environmental cues; scientific sonification makes use of sound synthesis 

to aurally display data; interactive music applies sound synthesis techniques to allow composers 

to dynamically control streams of audio events during a live performance.   

There are a variety of existing sound synthesis tools available, both software and hardware 

based, varying in scope, implementation and cost.  There are two approaches to these tools.  One 

approach is with low-level toolkits, close to the hardware and operating system, which require 

additional programming to manipulate the sound.  Another approach is end-user applications, 

generally built from the low-level toolkits, which are accessed with a graphical user interface 

(GUI). 

Audio synthesis toolkits are often implemented in specialized audio hardware due to their 

computational needs.  Generally, most tools implemented in hardware cannot migrate or scale to 

other systems and configurations beyond those of their original design, limiting their use by a 

wide range of users.  Lately personal computers have become fast enough to support software-
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based audio synthesis, which potentially enables the audio generation to happen on a 

heterogeneous mix of computing platforms, including the ability to run on the same system as 

the end-user application.  Software audio synthesis has the potential to provide the features of 

scalability, portability, and generality to end-user applications.  When audio synthesis tools are 

not scalable, they limit the growth of audio capabilities for new applications.  When these tools 

are not general, then it is possible they will not fit the task, forcing a developer to use 

combinations of audio tools or writing new ones.  When using tools that are not portable, 

applications that are otherwise portable cannot migrate to other systems.  This thesis addresses 

those issues by presenting an audio synthesis toolkit design for the creation of interactive audio 

applications that can be portable, scalable, and reusable across heterogeneous underlying audio 

hardware capabilities and computer systems. 

Statement of Purpose 

The research presented in this document addresses the generality, scalability, and portability 

problems associated with real time audio synthesis toolkits used by end-user interactive 

applications.  The research focuses on the design and development of Subsynth, a low-level 

audio synthesis toolkit for building higher-level real-time audio components for use in virtual 

environments, scientific sonification, and interactive music composition and performance. 

Scalability in Subsynth is achieved by decoupling the sound generation from the hardware, 

allowing applications to transparently increase their audio capabilities as more powerful audio 

hardware becomes available.  Generality in Subsynth is achieved by using a modular design, low 

coupling of components, and parameterization of configuration information, enabling reusability 

of audio synthesis components.  Portability is achieved by Subsynth’s hardware and operating 

system independent implementation.  In addition Subsynth is distributed as an Open Source 
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product, so hopefully a large community of users will benefit from using it, and audio developers 

will be able to enhance it and evolve it as new technology in audio synthesis becomes available. 

Subsynth is intended to be a flexible layer to support the development of higher-level audio 

tools for interactive audio applications.  The goal is not an interface to audio for laypeople but 

rather a scalable, portable, and open audio subsystem architecture, built around the concepts of 

audio synthesis, to make possible a wide range of audio applications. 

Scope of Research 

The scope of this work applies to interactive audio for virtual environments, scientific 

sonification, interactive music, and general audio playback.   

The research was performed in the following stages: 

1. Define requirements specific to real-time audio applications 

We first needed to analyze the application domains of virtual environments, interactive 

audio, and scientific sonification; then we identified their audio requirements.  To help 

understand the requirements, existing tools were examined, and some prototypes were 

developed. 

2. Analyze existing audio subsystems 

From the requirements addressed in the previous step, we investigated how existing tools 

addressed them.  We noted strengths and limits, and used these to guide our design. 

3. Design of Subsynth based upon requirements 

By analyzing existing audio tools in step two, and combining that with the requirements 

found in step one, we were able to define a design for Subsynth.  Iterating between steps one, 

two, three and four yielded a process of iterative refinement used to finalize the design of 

Subsynth. 

4. Implementation 
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Once we had a design for Subsynth we implemented the core framework, which includes 

audio generators and processors, and the methods in which to configure them generically.  A 

stable core allowed multiple developers to work on separate components at the same time.  

Using the implemented core framework, we created extensions to enhance the functionality of 

the toolkit.  We also developed libraries and applications on top of the overall tool.  This usage 

of the framework helped us to see how well the design of the framework held up, and it caused 

us to look for new ways to improve the framework design.   

5. Develop case studies 

With a stable core and a set of useful features in place, we were able to write applications to 

exploit the benefits of the Subsynth software.  To test the real-time and functional capabilities of 

Subsynth, we used its audio synthesis capabilities in the context of generating music.  Also, we 

noticed that one of our early prototype sound toolkit designs (called Sonix) could be 

implemented in terms of Subsynth.  Sonix turned out to be much too simple for the generalized 

requirements of Subsynth but was useful to a very common computer audio use.  With this new 

tool Sonix, we can provide a high level and simple interface on top of Subsynth that enables a 

novice programmer to use audio quickly. 

6. Discuss Results and Future Work 

With the research completed, we are able to reflect upon the successes and the failures.  This 

is the last iteration before the completed research, marking the current state of Subsynth.  

Sharing of results enables other researchers to understand the effectiveness of the research and 

communicates to future researchers where to go next. 

The research stages are presented in this document as follows: 
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• Chapter 2 covers background material and definitions for Digital Audio, Computer 

Music, and Sonification. 

• Chapter 3 outlines the needs of an interactive audio tool. 

• Chapter 4 illustrates stage two of the research by presenting an overview and analysis of 

existing interactive audio tools. 

• Chapter 5 satisfies stages three and four of the research by describing the analysis, 

design, and implementation of Subsynth. 

• Chapter 6 shows stage five of the research by showing case studies where higher level 

tools have been built upon Subsynth. 

• Chapters 7, 8, and 9 satisfy stage six of the research by discussing the results and future 

work needed for Subsynth. 
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CHAPTER 2 BACKGROUND 

Digital Audio 

Most computers today have audio capabilities that range from producing simple sounds 

triggered by user interactions to the low level rendering of high quality music.  These audio 

capabilities are possible through the digital representation of sound.  In the real world, sound 

travels as longitudinal waves compressing and expanding the air.  If we imagine a molecule of 

air being pushed by the waves, we can represent the sound by a function of time x(t), where x is 

the displacement of the molecule (air pressure).  To represent sound in a computer, the time 

variable t and the pressure variable x(t) must be discretized by two processes called sampling and 

quantizing [Dodge97][Steiglitz96]. 

Sampling is the process of taking measurements over time resulting in a discrete series of 

values.  Quantizing is the process of clamping each measurement to one of a discrete range of 

values.  Usually each measurement is called a sample, while the entire waveform is called the 

signal.  Samples can be obtained by taking individual measurements from sound signals.  In 

addition, samples can be generated procedurally, which is common in sound synthesis, and they 

can be processed using manipulative functions such as distortion or filtering, which will be 

explained later.  Understanding this process of sampling and quantization is important to this 

thesis work.   Because Subsynth is an audio synthesizer, it will need to generate and process 

samples over time.  The audio synthesis algorithms that do the generation and processing need to 

be aware of the sampling rate, and the resolution at which pressure values are quantized. 

Sampling 

Sampling is the process of taking pressure measurements from a signal over time.  Sampling 

theory tells us that when representing a signal digitally, there must be two times the number of 
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samples per second than the highest frequency expected to reproduce [Steiglitz96].  This highest 

possible frequency is called the Nyquist frequency.  It represents the highest reproducible 

frequency possible when using a given sampling rate.  Nyquist tells us that, for a given sampling 

rate, the maximum frequency that is representable is always one half the sampling rate.  

Therefore, the sampling rate always needs to be more than twice as high as the highest frequency 

that exists in the sampled signal.  To understand this, imagine sampling a steady single-

frequency signal at a lower rate than the signal’s original frequency (Figure 1).  The result is that 

the sampled data would be missing much detail since we are trying to capture frequencies well 

above the Nyquist frequency, which would be around 350Hz in the figure. 

 
Figure 1. Sampling a 770Hz sinusoid at 700Hz. 

In Subsynth, the sampling rate needs to be considered so that audio signals are generated and 

processed at the same rates.  The Nyquist frequency is very important since it determines the 

highest possible frequency tone that a synthesizer can generate.  To generate any sound, a 

synthesizer needs to sample existing signals, whether they are from the real world, from pre-

recorded sounds, or from procedural functions.  In pre-recorded sounds, even though represented 

digitally, they can be sampled at higher or lower rates to achieve a change in frequency.  In 

procedural functions, for example f(t), they need an increment in t (time) each time the 

synthesizer needs to get a new value.  Each call to f(t) is considered one sample. 
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Quantizing 

Quantizing is the process of representing a signal’s pressure values with some finite bit-

length word.  Computers today are able to represent a signal with no noticeable artifacts due to 

word length.  It has become practical to use 32 bits or more per sample.  Artifacts from smaller 

word lengths occur because of error.  For example, if a pressure value at a given time sample is 

12349.5, but during quantization the value is clamped to a number in the set of integers, then this 

error and many others in the signal may become noticeable when listening to the signal as a 

whole.   

To visualize this phenomenon of quantization error that we have just explained, see Figure 2.  

It is important to notice that whenever the computer samples a signal, whether originally from 

the natural world or from some mathematical function, the resulting digital signal will have 

distortions proportional to the word length chosen to represent the signal.  To enhance sound 

clarity in an audio synthesizer such as Subsynth, a large word length should be chosen, but not 

so large that performance is impacted.  Larger sizes mean that more data will have to be 

processed, although some processors have specialized units available that can make processing 

of larger sizes actually faster than using smaller sizes.  Currently 32-bit floating-point values 

work well on modern processors. 
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Figure 2.  Errors during quantization of a smooth curve. 

Digital/Analog Conversion 

To further understand the relationship between real audio signals and digital ones, we 

discuss a process to convert between them.  In the real world, audio signals exist as an infinite 

series of pressure values, while in a computer, they are represented by a finite series of discrete 

pressure values.  A conversion process is used to go between the real world and the computer 

representations of any audio signal.  Sampling and quantizing achieve this conversion process.  

Conversion is done by a piece of hardware called the analog to digital converter (ADC), which is 

usually a small integrated circuit (IC) computer chip.  To sample, the chip measures the 

incoming sound pressure value at regular intervals called the sampling rate.  To quantize, each 

sampled value is then clamped to one of a discrete range of values (Figure 2). 

When reproducing sound, the system needs to convert the digital signal back to an analog 

format suitable for speakers, headphones, or other analog equipment.  This reverse conversion 

process is done with a similar IC called a digital-to-analog converter (DAC).  Conversion from 
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continuous to discrete and vice versa is important to Subsynth to help understand the relationship 

between natural audio signals and those being generated and manipulated.  

Dual Representation 

Computers represent sound in terms of digital signals, but there are two ways to represent 

them.  A digital signal can be represented as a waveform (pressure versus time) (Figure 3) or as a 

spectrum (frequency versus time) (Figure 4).  Pressure vs. time is very common and is the usual 

method of storing audio signals, however either representation is useful in different situations.  

The waveform representation is useful when manipulating aspects of time, while the spectrum 

representation is useful when manipulating aspects of frequency. 

 
Figure 3  Time domain representation of a signal. 

 
Figure 4.  Frequency domain representation of a signal. 

Each representation may be converted to the other using a Fourier transform.  There is an 

efficient version of this algorithm suitable for real-time use called the Fast Fourier Transform 
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(FFT) [Steiglitz96].  Conversion is appropriate when manipulations in one domain are easier to 

think of or more efficient to compute than in the other domain.  The waveform is constructed 

from the spectrum by generating sinusoids over time with the list of frequencies. 

These two representations are important to a digital synthesizer that needs to perform 

operations in each time or frequency domain.  For example, to change the pitch or frequency of a 

tone without affecting the duration, the synthesizer will use an algorithm that changes the 

frequency domain attributes of the waveform.  To add echo effects, the synthesizer should use 

the time domain representation since an echo is dependent on the sound propagation time 

through the air.  There are many effects possible when considering this representation duality. 

Distortion 

One method of manipulating an audio signal is distortion.  Distortion can be qualitatively 

“good”, for example in the case of vibrato, which is a method of modulating the frequency of a 

tone slightly over time.  Distortion can also qualitatively be “bad”, in the case when unwanted 

perturbations happen to a signal, which we will describe next.  It is usually important to 

minimize distortion in a digital audio system to minimize perceivable artifacts.  There are three 

types of unwanted distortion: frequency, amplitude, and phase distortion [Steiglitz96]. 

Frequency distortion is caused by errors in an electronic device, either through faulty 

electronics, or digital effects such as round-off and precision errors.  For example, frequency 

distortion could occur when specifying a given frequency, and the synthesizer creates a tone with 

a frequency that is off by some amount.  For example, this could happen when converting a 

control signal into a frequency where the conversion process is faulty or uses approximations.  

Code optimizations are sometimes used which choose speed over accuracy.  Control signals are 

usually represented linearly for intuitive use by humans, while frequency is on an exponential 
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scale, as illustrated by the fact that a given pitch doubled in frequency, sounds like the same 

pitch an octave higher to the human ear. 

Amplitude distortion is the most common, and is caused by the non-linear response of a 

device to the input signal amplitude.  Non-linearities occur, for example, when boosting a signal 

above the maximum limits that the hardware or numerical representation allows.  This is often 

called clipping the signal. 

Phase distortion can occur when there is some latency in a particular spectrum.  This can 

occur in hardware when using separate speakers for bass and treble.  Alternatively it can occur 

with a digital system that processes different components of the spectrum with different 

latencies. 

In a synthesizer, distortion should be avoided except where explicitly needed during 

processing.  For example, when reproducing a tone verbatim, care should be taken to avoid 

quantizing the sound pressure values outside the possible ranges that the datatype will hold.  

This is an example of clipping, which is distortion that is usually undesired.  For an example of 

distortion that is desired, see the section later on modulation synthesis.  Modulation synthesis 

can distort one signal using another signal to achieve effects such as tremolo and vibrato. 

Common Audio Formats Used in Digital Computers Today 

This section covers the practical issues of implementing the digital audio representation 

inside a computer.  It gives several common data formats that are used in synthesis applications 

and forms a practical guide for how to represent digital audio in the Subsynth synthesizer.   

An audio format is a specification of how to represent one or more audio signals in computer 

memory, some examples of which could be hard disk, RAM, optical disk, or digital audiotape.  



13

These media types have uses ranging from long-term audio storage for archival to short term 

storage for immediate playback.  Some formats require more processing than others to retrieve.  

Each format has strengths and limitations, and here we will discuss in detail PCM, WAV, AIFF, 

MP3, and OGG, the most popular audio formats. 

These formats range from open public standards to closed proprietary formats.  MP3, which 

is a closed format, is not open but is in wide use and generally perceived to be open.  Closed 

formats such as MP3 can have patents, which may be claimed at a later date.  When choosing to 

use one of these formats, it is good to consider these issues in addition to the technical merits. 

PCM 

Pulse Code Modulation, or PCM, is the most common format for storing uncompressed 

digital audio [Steiglitz96][Roads96].  It is the format found on compact discs and is the 

intermediate format used to transmit audio data to a computer’s sound card during playback of 

any audio file whether during game play, virtual environment usage, or simple playback of a 

music album.  The PCM audio format consists of an array of sound pressure levels sampled over 

time (Figure 5).  The number of samples per second is the sampling rate, and the bit width of 

each sample affects the quantization.  There can be many of these arrays to represent sound 

channels.  Sound channels are used, for example, in sending discrete information to individual 

speakers, or to other audio components for further processing.  Each sound channel may be 

interlaced (Figure 7) or separated (Figure 6).  Interlaced PCM audio format is the most common 

format because each sample in a given frame is readily available as a result of their close 

grouping in memory. 

 
Figure 5.  Single audio channel of PCM data in memory.  
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Figure 6.  Noninterlaced PCM audio data with N number of channels. 

 
Figure 7.  Interlaced PCM audio data. 

PCM is a fundamental audio data format.  In practice, though, PCM has its strengths and 

weaknesses.  Strengths include quality and lossless representation of an audio signal.  

Weaknesses in PCM are in its size, which can make distribution of recorded material more 

expensive.  There is much more data in PCM than the human brain can process.  For example, 

each minute of 44100Hz 16bit stereo PCM data takes about 10 megabytes of storage.  In 

Subsynth, and in many other software synthesizers such as the ones we review in this thesis, 

audio is processed in the fundamental PCM format. 
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WAV PCM 

The WAVE file format, or WAV, is a format for storing digital audio data [WavSpec].  It 

supports many different combinations of encoding types, bit resolutions, sample rates, and 

channels.  The most simple and common encoding used in the WAV file format is the 

uncompressed PCM format mentioned earlier, or WAV PCM.  WAV also supports a variety of 

other encoding methods, making it a sort of “catch all”.  WAV also stores some additional meta 

data for cue points, play lists, and instrument data.  A cue point specifies a marker to a specific 

offset within the data.  A play list specifies a play order for a series of cue points.  The 

instrument definition is used to specify information useful to wave table synthesis such as gain, 

tuning, and loop points.  The WAV format is very common on computers running the Microsoft 

Windows operating systems. 

The strength of the WAV PCM format is that it can very closely match the original 

recording, especially if the PCM data was taken verbatim from a compact disc recording.  The 

weakness of WAV PCM is in its size, where CD quality stereo PCM data is about 10 megabytes 

per minute.  With the instrument data field definable, the WAV format would be good for audio 

synthesis applications. 

In Subsynth, WAV PCM is used to read and write sounds from the computer’s file system.  

The following formats we describe in this section (AIFF, MP3, OGG) could be used but 

currently are not supported, we explain them because they would be useful to have in a 

synthesizer such as Subsynth. 

AIFF 

Audio Interchange File Format, or AIFF, is another format similar to the WAV format 

[AiffSpec].  It also supports PCM encoding, as well as other meta data to describe instrument 
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parameters such as loop points and MIDI note value.  AIFF format is primarily found on the 

Apple operating systems, but is also common on some variants of Unix such as SGI’s IRIX.  

With respect to PCM encoded data, the strengths and weaknesses of AIFF are roughly the same 

as the WAV format. 

MPEG Layer 3 

MPEG Layer 3, or MP3, is an audio format that allows a high compression ratio while 

maintaining sonic quality [MP3Fraunhofer][MP3Spec].  MP3 format uses a perceptual encoding 

technique based on knowledge of human psychoacoustics to achieve compression up to eleven 

times smaller than the original uncompressed audio signal.   

Encoding of MP3 data removes both absolute and perceptually redundant information and is 

performed using two compression techniques, one which is lossy1 and based on mathematical 

models of human psychoacoustics, and one which is lossless2.  First, the source audio data is 

transformed to its frequency domain equivalent.  Then, for each frame, the frequency spectrum 

energy distribution is analyzed and compared to models of human hearing.  Based on human 

psychoacoustics, certain frequency components can be discarded.  Some cases where certain 

frequencies are not needed are:  

                                                      

1 Lossy refers to a data compression technique that actually reduces the amount of information in the data, 

rather than just the number of bits used to represent that information. This technique’s approach is based 

on the assumption that the removed information is not important for the quality of the data, which is 

usually an image or a sound. 

2 Lossless refers to a data compression technique that retains all the information in the data, allowing it to 

be fully recovered by decompression. 
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• When two frequencies are very close, the human brain usually only hears one of them. 

• When one frequency is much louder than another, the human brain may not hear the 

quiet one. 

• When frequencies are outside the range of normal human hearing, they will not be heard. 

After unneeded frequencies are culled out using lossy compression, then a lossless 

compression technique called “Huffman Encoding” is applied.  This is a standard compression 

algorithm, similar to the common ZIP compression, which removes any redundant data left in 

the audio stream [Murray96]. 

The data in an MP3 file is broken into frames of a few milliseconds in length, each frame 

with a 32bit header preceding it that describes the bit rate, sampling rate, mpeg version, a data 

checksum, and other bits that describe the file such as whether it is copyrighted or an original 

file.  The data part in each frame is encoded by frequency, which during playback, can be 

converted to the time domain form.   

Strengths of MP3 include its very small size in relation to PCM. For CD quality stereo the 

general rule is about one megabyte per minute.  This is very important for small-memory 

embedded devices, storage of large audio databases, and for transmission of audio over slow 

network connections.  The perceivable quality of MP3 is very good, where most people cannot 

tell the difference between MP3 and PCM.  One very useful application of this technology is in 

collaborative virtual environments, where upon connection, a client may need to download or 

refresh their copy of the world database.  MP3 technology, with its very small memory footprint, 

brings audio in collaborative virtual environments to a wide audience of users who may have 

very slow connections.   

Weaknesses of MP3 are that the format is lossy, and while it usually cannot be perceived, 

the lossiness is perceivable by certain people with sensitive hearing.  Also, artifacts from the 
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lossy compression will build up over time as the same piece of audio is repeatedly compressed 

and decompressed.  One other point to mention about MP3 is that it is a proprietary format 

whose patent is owned by Fraunhofer.  This means that, technically, any use of MP3 must pay 

royalties to Fraunhofer. 

OGG Vorbis 

OGG Vorbis, or “OGG”, is a format similar to MP3, but developed to be completely patent 

free.  It offers an open standard freely available to anyone.  It has all the strengths of MP3, but 

with better quality for smaller file sizes [Ogg].  OGG, like MP3, is also lossy but is not restricted 

by patents.  For open source and public domain applications where data size is a concern, OGG 

would be a good solution.  Synthesis applications should be aware of the processing needed to 

convert OGG and MP3 to the PCM format, which is useful to audio synthesis algorithms.  OGG 

is not supported yet in Subsynth, but should be in the future in order to facilitate high 

compression for the fast distribution of data. 

Digital Audio Synthesis 

Digital audio synthesis is a way to generate the time-domain sequence of numbers that 

represents the samples of an audio waveform.  In short, sound synthesis is a way to generate 

sound.  There are many ways to synthesize sound, each allowing a different method of control.  

Audio synthesis capabilities are important to Subsynth giving us methods to produce audio 

signals than can be modified in real time.  The audio synthesis methods we will examine are as 

follows: 
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• Table lookup synthesis generates waveforms by sampling a stored function representing 

a single cycle. 

• Additive synthesis generates the individual frequencies of a complex tone, each with its 

own loudness curve (or envelope). 

• Subtractive synthesis begins with a complex tone and filters it. 

• Non-linear synthesis uses frequency modulation and wave-shaping to give simple 

signals complex characteristics.   

To specify these forms of audio synthesis, and combinations of them, a visual modeling 

language is available called the “unit generator language”.  This language translates into the 

basic framework for Subsynth that provides a method to generically hook together audio 

generation and processing modules.  Next we describe this language, and then we use this 

language as a basis to describe several audio synthesis methods. 

Unit Generator Language 

When the Unit Generator visual language was developed, it was considered a very 

significant development in audio synthesis language development.  Many kinds of audio 

synthesis algorithms are specifiable using the unit generator language.  The first audio synthesis 

language using the unit generator concept was Music III by Max V. Mathews and Joan Miller in 

1960 [Roads96].   
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Figure 8.  Unit generator.   

Unit generators are connectable signal processing modules that take as input zero or more 

audio signal streams or single valued parameters [Roads96][Dodge97][Moore98].  Shown in 

Figure 8, unit generators consume real-time and parameterized input, and produce real-time 

output signals that can be connected to other unit generators.  The information carried in these 

real-time signals can be audible sound or for high-resolution control.  After processing, a signal 

is output at zero or more data streaming outputs.  A sink, which is a unit generator with only 

inputs, is used to represent a processor with no output onto the defined sound network.  Sinks are 

often used to represent transport of the audio data to the outside of the system, for example to a 

sound card or other subsystem external to the synthesis software.   Often each source unit 

generator is called a “voice”.  When connected, the network of unit generators form an 

instrument or “patch” that can generate a sound signal.  Many commercial synthesizers use the 

concept of patch to represent a single instrument, or more specifically, a predefined 

configuration of a unit generator network.  In practice, the patch may or may not be implemented 
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as flexibly and as modularly as the unit generator language.  The concept is an effective way to 

think about what is happening in the synthesis algorithm regardless of how it is implemented. 

Unit Generator Building Blocks 

Before we introduce some audio synthesis methods, the anatomy of unit generators, and several 

unit generator types should be understood first.  These types are used to describe the various 

synthesis methods: 

1. Envelope and Envelope Generator.  A constant value used in the amplitude of a 

waveform yields a sound event with constant amplitude.  In the real world, instruments 

and other sound events often have time varying amplitude, and in general sound more 

interesting than non amplitude-varying sounds.  To support time varying parameter 

input, the concept of envelope is introduced.  An envelope generates a signal that is used 

to control other unit generator’s parameters, such as amplitude or pitch, over time.  

Envelopes can be specified in many ways.  In Figure 9 an envelope generator is shown 

that uses a waveform to control amplitude.  In practice, many commercial synthesizers 

support a different style of envelope called an ADSR, which lets the user specify the time 

delay and amplitude of the attack, decay, sustain, and release events (Figure 11).  An 

ADSR allows a simple, efficient, yet course-grained method of control of amplitude over 

time.  Some current digital synthesizers allow tracing of arbitrary curves, which allow 

greater precision in specifying the behavior of an instrument.   Envelope generators may 

be implemented to generate their output via a procedure (mathematically), or from a 

specified waveform. 
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Figure 9.  An envelope unit generator. 

 
Figure 10.  An envelope generator directly controlling the amplitude of another unit 

generator. 

 
Figure 11.  Typical signal for an ADSR envelope generator. 

2. Arithmetic Operator.  In audio synthesis it is often necessary to combine or transform 

signals with other signals.  For this purpose an arithmetic unit generator is useful.  
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Common operations include multiplication and addition (Figure 12), which are used to 

combine signals together.  Multiplication is useful when scaling the amplitude of a 

signal.  For example, to apply an envelope to an existing signal, attach the envelope 

generator to one terminal of a multiply unit generator, and attach the signal to the 

other terminal (Figure 13).  Addition is useful when mixing two or more signals. 

                       
Figure 12.  Multiplication and addition unit generators. 

 
Figure 13.  Example of a multiplier used to control amplitude. 

Fixed-Waveform Table-lookup Synthesis 

Fixed-Waveform Table-lookup Synthesis, or wave-table synthesis, is an efficient way to 

produce complex tones [Dodge97].  Wavetable synthesis takes advantage of the fact that some 

sounds contain redundant information.  At small scale, redundancy comes from the simple 
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periodicity of frequency, at larger scales redundancy comes from sounds that contain loopable 

components – parts that when repeated make it hard to hear a repetition.   

Wavetable synthesis works by looping a portion of the sound that is repeatable – or with the 

ability to be repeated so to not become tiring to the ear.  A wavetable is analogous to textures 

from the field of computer graphics.  Often a texture will be used as an easy and effective way to 

add complexity and detail to 3D surface geometry.  Textures should be tileable, or able to be 

repeated, without the ability to discern where the tiles start or stop.  Like textures, wavetable 

sounds also need to be tileable, except that the words loopable and repeatable apply better to the 

case of sound.  Representing complex features using presampled material is advantageous.  The 

reason is that in terms of computer processing power, reading samples from memory is much 

less expensive than mathematically computing each sample. 

The Digital Oscillator Unit Generator 

A digital oscillator is a concept that describes the traversal over an array of data.  The array 

can be circular, meaning that the traversal can iterate through the data restarting at the beginning 

causing a loop, or the array can be noncircular where the traversal can travel to the end once and 

simply stop.  A digital oscillator is a fundamental type in the unit generator language (Figure 

14).  This unit generator is commonly used in synthesizers because of its efficiency and realism. 

 
Figure 14.  A digital oscillator. 
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Example Uses of Wavetable Synthesis 

Wavetable synthesis is very common in modern synthesizers because of its efficiency and 

realism, making the price per performance very attractive.  Practically any real instrument can be 

synthesized using this technique.  To create a loopable sound for use in a wavetable, the 

instrument is sampled within the frequency range expected to be used.  Next the sound is edited 

to be loopable, which can be done by visually inspecting the waveform graph and alternately 

listening for artifacts.   

Instruments that have a long period of sustain are especially good source material to use to 

obtain a repeatable sound for use in a wavetable.  Usually post processing is required to make the 

looping wave indistinguishable from a real instrument.  Alternately percussion instruments often 

do not repeat at all.  To create source material for these, the duration of the instrument’s play 

time is stored in a waveform.  Post editing for repeatability is not necessary for these types of 

percussive instruments.  Very simple sounds can also be represented with a wavetable.  A sine 

wave is one example that has very short repeatable sections.  All fundamental waves (sine, 

triangle, saw, square, etc.) by their periodic nature can be represented by a wavetable that is 

equal in length to one period of the waveform (Figure 15). 

 
Figure 15.  One period of a sine wave. 
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Implementing Wavetable Synthesis 

To create the wave table entries, a signal can be loaded from file (see section titled 

“Common Audio Formats Used in Digital Computers Today”), procedurally generated using 

other synthesis method described here, or sampled from the environment.  Wave-table synthesis 

is implemented by traversing the wavetable values one or many times.  Non-looping percussive 

instruments are traversed once, while other instruments with a long sustaining portion are usually 

traversed indefinately.  Traversal of the values can be one to one, but it is often useful to support 

a variable step size, which allows the traversal speed, and ultimately the sound frequency, to be 

changed.   Changing the traversal rate causes values to be skipped or selected multiple times.  A 

better way to think about this traversal is that the digital oscillator is actually sampling the 

lookup table as if it were a continuous signal.  Obviously, it is not a continuous signal, so when a 

sample falls outside of a real measurement some kind of approximation is given either by 

clamping to the nearest value or interpolating between the two nearest.  To avoid high frequency 

artifacts caused by rounding errors during sampling, interpolation schemes can be used when the 

sample falls between two wave table values.  Interpolation, rather than simply rounding to one 

value or the other, smoothes out the result, resulting in less artifacts and a waveform that is 

closer to the original in tonal quality.  Several forms of interpolation are available: linear, cubic, 

and spline are a few (Interp). 

Additive Synthesis and Wavestacking 

Additive synthesis [Mathews69] is a method for creating complex sounds through addition 

of simple tones [Roads96].  For the simple tones, known as partials, additive synthesis uses sine 

waves.  The addition of the partials yields one additive synthesis sound generator, known as a 

voice.  A variation on additive synthesis is called “wavestacking”, which adds together complex 
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waveforms such as sampled sounds.  Like additive synthesis, each sampled sound in 

wavestacking also has its own envelope.  An example use of this could be to make hybrid 

instruments such as piano/flute, where the individual voices fade in and out according to their 

own amplitude envelope.  An instrument using additive synthesis can produce a very wide range 

of sounds.  The tradeoff with this approach is that the number of input parameters needed to 

specify an additive synthesis algorithm grows with the complexity of the algorithm, making it 

very difficult to handle.  

Subtractive Synthesis 

Subtractive synthesis is the method of selectively removing frequencies from a source signal 

to shape the spectrum of a sound [Pierce92].  The dominant unit generator in subtractive 

synthesis is the filter.  The filter takes as input one audio signal, and outputs one audio signal.   

Controls are usually provided so the user can affect which frequencies get removed.  A common 

control is cutoff, which specifies the point at which to eliminate all frequencies either above or 

below depending on the filter.  Typical filters are: the high-pass, which removes frequencies 

below the cutoff point; low-pass, which removes frequencies above the cutoff point; and band-

pass, which is a combination of low and high-pass filters, which offers two cutoff points and 

results in only a range of frequencies being let through.  Figure 16 shows the unit generator 

symbol for a band-pass filter, which only allows a range of frequencies through.  This filter can 

also be configured to be a low or high-pass filter by setting the center at 0 or at Nyquist and 

using the BandWidth input as the cutoff. 
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Figure 16.  The unit generator symbol for a filter. 

Non-linear or Modulation Synthesis 

Modulation synthesis is a way to produce complex sounds with very simple groups of unit 

generators [Chowning73].  It includes several techniques, such as ring modulation, amplitude 

modulation, and frequency modulation.  Specifically, modulation is the alteration of the 

amplitude, phase, or frequency of an oscillator as controlled by another signal [Dodge97].  

Modulation synthesis is more efficient than subtractive and additive synthesis in terms of 

memory, processing time, and number of parameters to specify.  Only 2-6 unit generators are 

typically needed for this type of audio synthesis, where several times this amount would be 

needed to achieve the same result in subtractive or additive synthesis methods [Roads96].  The 

shortcoming of modulation synthesis is that it can be very non intuitive to specify the 

parameters, since small changes in parameters yield widely different complex sound.  With this 

type of audio synthesis it is possible to produce tones that come very close to natural instrument 

tones, as well as other more creative non-natural tones.   

The configuration seen in Figure 13 is one example of how to connect unit generators for 

amplitude modulation (AM), or more generally, ring modulation (RM).  RM is where one signal 

scales the other signal over some time varying frequency.  The difference between AM and RM 

is that in AM the waveform is always unipolar (the entire waveform is above zero).  At slow 



29

rates RM produces the popular tremolo effect, and at fast rates can produce more complex 

effects.  Another possible configuration for RM is in Figure 10.  Frequency modulation can be 

configured similarly to Figure 10 if the first oscillator was connected to the frequency terminal 

instead of the amplitude terminal.  AM is also used to apply an envelope to a signal, a technique 

that produces a more physical quality for use in sounding musical notes.  In Figure 17 we 

illustrate how an envelope can be used to shape a signal.  The operation shown is c = a * b, 

where signal b scales signal a to produce signal c.  In practice, each sample a[n] and b[n] are 

multiplied together to produce c[n], where n is a sample index. 

 
Figure 17.  Amplitude modulation illustrated. 

In summary, digital sound synthesis builds upon digital audio by specifying methods to 

manipulate the audio.  Next we will introduce sonification, which is a discipline that uses the 

concepts we presented here in the Digital Audio Synthesis section.  In sonification, audio 

synthesis is the technique used to manipulate audio in response to data in many situations. 

Sonification 

Sonification is a non-speech aural way to represent information [Kramer97].  It is a way to 

transform a given set of data into sound in order to better communicate or interpret the 

information. There are other terms to describe this idea, but “sonification” is the most common.  

The terminology is not standardized, but often the distinction is made between data-controlled 

sound (sonification), and direct playback of data samples (audification) [Kramer94].  Another 
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term is “auralization”, which is sometimes used as the sound parallel to “visualization”, which is 

the standard term used to describe the representation of data through images [Visualization].   

Sonification is an interdisciplinary field requiring skills from many fields of study including 

human perception, acoustics, design, the arts, and engineering.  Sonification integrates the 

following four areas: 

• Psychological research in perception and cognition 

• Design and application of sonification methods 

• Development of sonification tools 

• End-user sonification applications 

Motivation for Sonification 

As computing power and storage capabilities increase, it is possible to study more complex 

scientific problems that generate or require massive amounts of data.  For example, the Human 

Genome Project has generated huge amounts of data while mapping the human genome that are 

well beyond terascale needs.  There are 30,000 genes in human DNA, with a total of 3 billion 

chemical base pairs [Genome].  There is a greater problem of how to analyze the data, or 

preprocess it to be ready for use with any display medium, let alone sound.  But once that is 

ready, it is anticipated that the data will still be quite large, and in order to be analyzed by 

scientists, it will require several representation channels besides visualization, where sonification 

will probably play a key role. 
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Examples of Sonification 

Sonification has been used successfully in many applications.  Here we will present an 

overview of some of the greater successes.  Simple uses of sonification include: 

• The Geiger counter, invented by Hans Geiger in the 1900’s, is a simple device to 

detect invisible radiation levels through “click” sounds [Kramer94].  Each click 

corresponds to a particle hitting the sensor allowing the user to perceive the level of 

radiation near them without taking their eyes off their work.  The counter provides a 

continuous reminder of the current radiation level. 

• Sonar is a method of detecting objects under water.  Similar to radar, sonar sends 

pulses of sound through the water that reflect back.  The time that it takes to get the 

signal back indicates the distance of objects, whereas the intensity of the sound tells 

the size. 

• Cockpit and dashboard displays often use sound to let the pilot focus on 

navigation.  For example warning tones emit when fuel is low so that the driver does 

not need to remove their eyes from the navigation task. 

• The Pulse-Oximeter is an instrument that emits a tone that varies in pitch with the 

level of oxygen in the patient’s blood [Kramer97].  This allows the surgeon to keep 

their eyes focused on the patient.  This sonification of the oxygen level uses a 

different channel of information, freeing the surgeon to focus on what is important. 

• In seismology recorded datasets can be huge and hard to understand [Kramer94].  

Since seismic data is naturally acoustic, it makes sense to listen to it.  Because the 

periodic frequency in seismic waves are much lower than the human audible range 

(20Hz – 20kHz), to hear them they need to be played back at a faster rate.  A 24-
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hour dataset can be compressed to 4 minutes, after which depending on the size of 

the seismic event, something like a gunshot can be heard.  When trained, a person 

can distinguish between the various earthquake ratings. 

When to Use Sonification Instead of Visualization 

Some very general rules can apply when deciding what data in an application is sonified and 

what data is not.  Typically sonification should be used when the data presented is simple, short, 

time based, or urgent.  This is because the mind is able to interpret patterns of serialized sound 

events easier than patterns of serialized visual events and because sound is always heard, 

independently of the listener orientation with respect to the sound source [Deatherage72].  

Conversely visualization is useful when the data presented is complex, long, spatial, or non-

urgent; it allows the user to view everything in parallel, allowing the user to instantaneously 

change their focus to intake different aspects of the data as needed. 

Requirements for Sonification Tools 

Here we outline some requirements when designing a sonification tool.  Included in these 

requirements are certain necessary components and features that are important to have in a 

sonification tool.  Components include the following: 

• Sound synthesis support for specification and control of the waveform. 

• Control software to aid in manipulation of the produced sound.  The controls should 

be accessible and should logically map the sound space in a way that makes sense. 

• Analysis tools to extract significant elements from the data. 

• Editing tools for basic manipulation of waveform or sequences of sound events. 
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• Signal processing utilities. 

In addition to the components, there are features that the software should also exhibit: 

• Portability.  Tools should be consistent, reliable, and portable across many 

computing locations and platforms.  This indicates that tools should use open 

standards as much as possible, limiting their dependency on proprietary features. 

• Flexibility.  Tools should be extendable enough to support new ideas when they are 

found.  Controls should be appropriate to the data being sonified.  Tools should be 

flexible enough to support many audio synthesis techniques.  A simple interface 

should be provided to make the tool accessible to novices. 

• Integrability.  Sonification tools should work with existing visualization tools. 

Methods of Sonification 

There are many methods of sonification.  The ones below are the most commonly used:   

• Auditory Icons are single sound events that represent what they sound like in the real 

world.  For example a grinding sound could happen when a user deletes a file from their 

computer, or a scraping sound could happen while dragging the file to a new location.  

An auditory icon is designed to be instantly familiar when heard, and correlates closely 

with the actual event that happened [AuditoryIcons]. 

• Earcons are tones, or sequences of tones that form the basis for building messages.  In 

music, a short series of tones is called a motive.  Earcons are constructed from a series of 

these motives.  The advantage is that with many sound events, many parameters are 

available to manipulate such as pitch, tempo, timbre, and loudness.  The motives can be 

combined or transformed to create more complex structures [Earcons]. 
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• Direct Simulation is a method of mapping raw data directly to sound.  Example uses of 

this method are described above in the seismology example.  Direct simulation works 

well in cases where data values closely resemble audio phenomenon, and contain events 

that vary over time.  For example, in Computational Fluid Dynamics Data (CFD) data, 

samples of pressure over time make a good candidate for playing directly to audio 

hardware.  This technique can be thought of as placing a virtual microphone into the 

stream of data to sample the pressure at a given point [AuditoryDisplay].  Other 

parameters like flow direction, and velocity are difficult to represent with direct 

simulation, and require another method. 

• Dynamic Music is a method in which music is used to represent data.  Typically in 

dynamic music, music events are generated in response to data.  Response can be to the 

data as it changes in real time, or as a preprocessed step.  In dynamic music, it is 

desirable to force the music into something that is qualitatively listenable to most people.  

Typically this means incorporating elements that in music research have proven to 

provide listenability such as providing a sense of completion and phrasing. 

As discussed in this chapter, the topic of sonification is important because it defines methods 

of utilizing sound as a medium to represent information.  In this thesis we address several 

application domains and the ones that rely the most on sonification are virtual environments such 

as scientific or entertainment. 

The following chapter describes the requirements for audio synthesis applications, including 

sonification, which lead into the design of Subsynth. 
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CHAPTER 3 REQUIREMENTS OF AN AUDIO SUBSYSTEM FOR 
INTERACTIVE APPLICATIONS 

This document focuses on two genres of interactive audio applications: virtual environments, 

and music.  Within each of these two genres, there are several areas that make use of audio with 

interactive capabilities: scientific sonification, interactive composition and performance, and 

virtual environment sonification.  These areas will drive the requirements and design satisfied by 

Subsynth, and we will discuss each in turn in the following sections.  Based on those areas, we 

will define the requirements of an audio subsystem for interactive applications. 

Scientific Sonification 

In the previous chapter, we discussed the reasons why scientific applications may need to 

sonify their data or present sound changes to the user to help understand the data.  In the past, 

sonification has been done offline, but recent advances have allowed scientific sonification to be 

done in real-time [Bryden02].  This follows similar trends in scientific visualization.  Scientific 

sonification may be done in response to real-time data or by allowing the user to probe areas of 

the data interactively. 

Interactive Composition and Performance 

Music authoring tools on computers allow the musician to input parameters in real time.  

This means that the user gets instant feedback about how the finished work will sound, thereby 

putting the human into the production loop.   This is important because music is often a direct 

expression of its composer.  Like any real musical instrument, a computer should respond in real 

time to provide this ability for expression. 

Music composition and playback applications demand a high degree of flexibility, as do tone 

generators for performance and studio work. Not only do these applications need to have a high 
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degree of polyphony (number of sounds able to play at a given time), they also need low latency 

resulting in highly interactive timbres. Complex polyphony is important so that the user does not 

run out of simultaneously usable sounds too quickly.  Low latency is important so that any user 

interaction performed feels natural and does not hinder artistic expression and creativity.  

Interactive timbres allow the composer to manipulate the tonal quality of the sound adding to 

expressiveness of an instrument. 

Configurability is important so that the artist or sound engineer can change the system to fit 

their needs either statically as a setup phase or dynamically during performance or playback. An 

example of dynamic modification could be a filter sweep to change instrument timbre over time 

in a piece of music.  An example of a static setup could be to choose an audio synthesis method, 

or to select the specific parameters for that method. 

Virtual Environment Sonification 

A virtual environment (VE) is one that gives the user a feeling of presence, the feeling of 

being there, by immersing them in some computer generated world.  VEs are usually explorable 

and interactive geometric spaces.  They are presented using realtime three-dimensional graphics 

and sound and can include force feedback, special input devices, and displays.  Most modern 

games such as Quake [Id], Ico [SCEI], and Grand Theft Auto [Rockstar] provide examples of 

VEs.  Fully immersive VEs are seen most often in scientific visualization centers and virtual 

reality research labs such as the Virtual Reality Applications Center (VRAC), Argonne National 

Labs (ANL), and National Center for Supercomputing Applications (NCSA).  Examples of these 

immersive VEs are Cueva De Fuego, and the Nexus [VRAC]. 

In typical VEs, uses of audio involve several wave table sound sources linked to various 

events.  For example, VEs may have audio file players for ambient music loop playback (wave 



37

or mp3 format for example), error tones, and other simple one-shot sound triggering.  These uses 

are often less intensive and have lower requirements than the highly dynamic use of sound in 

“Scientific Sonification” listed above.  Collaborative VEs may also make use of streaming audio 

for distributed communication.  For enhanced immersion, VEs may use filters on triggered 

sounds such as Doppler, reverb, and Head Related Transfer Function (HRTF) [HRTF] as a 

secondary means to present motion, room size, room material, and 3D position. 

Requirements 

Considering the application domains we have outlined, we now outline our requirements for 

an audio synthesis toolkit. 

• Configurable.  To support uses beyond an audio synthesis tool’s original design, the 

system must be very configurable.  For this, the system design should be partitioned into 

reusable, pluggable pieces where applications use only as many pieces as they need to 

get the desired results.  In addition, the toolkit should reconfigurable while the 

application is running rather than limited to only one setup step at the beginning. 

• Useful Synthesis Methods.  The toolkit must provide a series of audio synthesis 

methods that make the toolkit instantly useable without the need for much user 

extension.  At a minimum, we feel that it should offer wavetable and subtractive 

synthesis methods, both of which give a wide range of control to applications.  

Specifically, this means features such as one-shot sounds, looping sounds, and 

environmental effects such as reverb, delay, and filter. 
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• Extensible.  To support future needs, the audio toolkit must be scalable and adaptable to 

new software extensions such as user defined audio synthesis techniques and must scale, 

adapt, and take advantage of underlying hardware such as CPUs or DSPs when 

available.  Because future components may be added later, a common generic interface 

should be supported so that applications can take advantage of the new features. 

• Real-time Interactivity.  A primary feature needed by these groups is the ability to 

manipulate the sound's control parameters based on the user interaction.    The sound 

system therefore must be flexible enough to offer many control parameters and be able 

to respond in a timely manner to the user's unpredictable actions.  The real-time nature 

of the toolkit should be designed to operate as a soft real-time tool.  VR and 

entertainment systems are often considered soft real-time [Manimaran01] [RealtimeVR].  

This means that in order to deliver a highly interactive and immersive experience to the 

user, these systems must be highly interactive and engaging to deliver an immersive 

experience.  As such they must have a high frame rate, good audio fidelity, and low-

latency response to user input so to not make the user sick or confused [Pausch92] 

[RealtimeVR]. VR and entertainment systems are not (usually) considered firm or hard 

real time because occasional slowdowns or anomalies in these applications do not have a 

severely detrimental effect on users.   For example, it is generally understood by these 

users that if they use their system to perform some other task, then the soft real-time task 

will probably be affected.  The metric that these soft-real-time systems go by is does the 

system present a convincing enough reality under normal conditions? 
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• Portable.  With potential for code development across several machine and operating 

system types the audio synthesis toolkit must be portable.  Our applications range from 

tone generation for music and 3D games running on common PCs to scientific 

simulations running on powerful multiprocessor or clustered systems.  We focus our 

solution to consumer level and professional workstation systems.  This includes 

operating systems such as Windows, Mac OS X, IRIX, and LiNUX.  Developing 

portable software for these platforms is easy if care is taken to write the software in 

terms of cross platform subsystems and programming language features.  For our 

research group at the Virtual Reality Applications Center (VRAC), being able to support 

these platforms allows us to keep our VR software scalable between PC and high-end 

SGI systems, while looking to migrate to lower cost LiNUX clusters. 

• Consistency.  The sounds that the toolkit makes should sound the same wherever it is 

used to facilitate application consistency across computing locations. 

• Interface Accessibility.  The toolkit should have a clean application-programming 

interface (API) and be accessible from an application of the type listed above.  This 

interface should be consistent with the real-time requirements, and cannot introduce 

latency or excessive computational overhead. 

• Runtime Location Agnostic.  The synthesis tool should be able to run within the same 

computer as the end-user application, or on a separate machine when extra performance 

is needed.  This decision should be left to the application writer, so the tool should make 

no restrictions with regard to where or how it is run. 

An additional requirement that we impose is the free distribution of the audio synthesis tool. 

This requirement is certainly optional, but is one that we chose to follow during the work of this 

thesis.  We want audio developers and users around the world to be able to combine efforts to 
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maintain and advance it.  To keep the integrity of the tool, it should go under an OSI approved 

license [OSI].  These licenses have undergone close scrutiny by the public, and in general allow 

standardized use, peer review, bug fixes, and feature submissions.  With the requirements 

defined, we move on to investigate several tools already in use and discuss how they address 

these requirements. 
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CHAPTER 4 CURRENT TOOLS FOR INTERACTIVE AUDIO 

Here we review existing audio tools that can be used for interactive real-time audio as 

described in the previous section.  We have chosen to review a selection of those tools that are 

the most general, scalable and portable; they are also the existing tools that most closely meet the 

requirements presented in the previous chapter. 

Musical Instrument Digital Interface (MIDI) 

Musical Instrument Digital Interface (MIDI) defines a standard serial interface for 

controlling musical devices [Roads96].  MIDI does not transmit sound but instead transmits 

messages which can be used to control sound devices or devices completely unrelated to sound 

such as stage equipment.  MIDI was designed in 1983. 

MIDI is an asynchronous serial interface with a transmission rate of 31.25 kilobits per 

second (kbps).  Each byte sent is 10 bits long, starting with a start bit, 8 data bits, and a stop bit.  

The MIDI transmission protocol is made up of messages.  Each message is contained in an 8-bit 

string, although some message data can span these to become many bytes long.  Typical 

messages that MIDI defines are note off, note on, aftertouch (key pressure), control change, 

patch change, pitch wheel, and system exclusive.  System exclusive (sysex) is the message that 

makes MIDI somewhat extendable.  Sysex defines a way for vendors to implement specific non-

portable control methods for their devices.  The problem is that this message type is not standard, 

and thus it has the potential to make applications control of tone generation inconsistent between 

MIDI devices.   

Each MIDI message can be directed to a “channel”.  In MIDI, there are sixteen channels, and 

these are used as a sort of cache to store instrument state.  Because setup of each instrument may 

take the device longer than the next note trigger, these channels are typically setup before any 
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notes are sent.  Each MIDI message then executes within the scope of that channel.  There are 

some global messages that execute outside the scope of any channel, but these do not make use 

of the channel (instrument) state [MIDISpec]. 

MIDI is an established standard that allows music control to be decoupled from the tone 

generator.  There are a diverse range of tone generator devices available that support the MIDI 

protocols.  Unfortunately, MIDI does not specify exactly what the tones sound like, which means 

that the resulting sounds produced by tone generators can vary dramatically.  MIDI provides no 

method to configure specific audio synthesis algorithms; rather it depends on tone generators to 

define what algorithms are used.  This hard-coded nature of current MIDI tone generators is a 

limitation.  It means that the controlling application has only high-level control over the resulting 

sound.  Any specific control over the sound through non-portable means such as MIDI sysex can 

be lost after migrating to another tone generator. 

MIDI has some issues with addressing.  Tone generators are only required to support sixteen 

addressable channels.  The maximum number of addressable devices is fixed.  Latency can be a 

limitation when accessing several tone generators at one time because devices are connected 

through daisy chaining, which means there will be some latency introduced as the MIDI message 

is retransmitted from device to device.  These addressing and latency limitations can be 

overcome through use of a MIDI hub.  A hub can fix the latency problems associated with daisy 

chaining because it can send the messages simultaneously from one hub rather than needing to 

retransmit over several hops in the daisy chain.  A hub can also increase the number of devices 

available through multiplexing. 

In summary, MIDI is good for most applications, but it fails our requirements criteria.  The 

reason is that applications written for MIDI can either be complex or portable but not both.  If 

they are portable, they cannot take advantage of every feature of the synthesizer because it 



43

would need to use sysex messages, which are device-dependent with contents not part of the 

MIDI standard and thus are not guaranteed to be implemented by any two MIDI devices.  

Consider the case of sonification of many-dimensional data.  If this application needs access to 

more parameters than standard MIDI has, then sysex will be needed to gain control of more 

synthesizer features.  For these complex applications using MIDI portability and complexity is a 

tradeoff that we hope to avoid with our design of Subsynth. 

CSound 

CSound is a very flexible tool from MIT that allows user interaction through scripting and 

some input devices such as MIDI [CSound].  The tool supports both an offline renderer as well 

as a real-time renderer.  CSound started in the 1960’s with the Music 4 program written at Bell 

Telephone Laboratories by Max Mathews.  This work coined the wave table concept and much 

of the terminology still in use by music researchers today [CsoundRef].  Followed by Music 4, 

was Music 4B, Music 360, and Music 11.  With Music 11, control and signal processing was 

separated into distinct networks, the design of which still survives in the modern CSound. 

CSound is written entirely in the C programming language [Kernighan88] and runs on any 

UNIX or Win32 machine.  CSound defines a scripting language.  This language can be used to 

control and specify music synthesis algorithms and actions.  The two scripting languages 

available in CSound are for instrument definition and for score definition.  The instrument 

scripts, having an .osc extension, allow a user to arbitrarily create instruments using 

mathematical notation (see Listing 8 in Appendix A).  The score scripting language, having a 

.sco extension, allows control of the instruments with a series of time-based events. 

CSound includes basic additive, subtractive, and non-linear synthesis methods.  It also 

includes more recent additions such as phase vocoder, spectral data types, and granular 
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synthesis.  A MIDI converter is included allowing CSound to be run from MIDI files and 

external keyboards.  Of interest is the real-time support in CSound with run-time event 

generation (via the score scripts and MIDI files) allowing run-time sensing and response setups 

for interactive composition and performance. 

CSound is currently only available as a script interpreter having no accessible application 

programming interface (API) useful to most virtual environment applications being developed 

today.  The software is written in C, but the API is not exposed or supported for use by C 

programmers.  Lastly, CSound has a non-OSI license that only allows educational use.  Any 

derivative works or tools that use CSound would have to have the same license.  This limits 

CSound from widespread use particularly in the commercial sector. 

Supercollider 

Supercollider is an environment for real-time audio synthesis [SuperCollider].  It is a 

software-based audio synthesis toolkit that only depends upon the computer system’s main 

processor and the PCM audio port on the sound card.  SuperCollider provides a new 

programming language that derives its structure and syntax from both Smalltalk and C.  The 

programming language features garbage collection, functions, and a small system for object 

oriented classes.  Other utilities provided in SuperCollider are a GUI builder for creating patch 

control panels, a graphical wavetable and breakpoint editor, MIDI control, and a very large 

collection of signal processing and audio synthesis functions. 

SuperCollider provides several classes of unit generator available as objects in the scripting 

language: 
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• Unary Operators: for every mathematical function (such as sine, cosine, floor, absolute 

value, negate, square root, etc.) 

• Binary Operators: such as +, -, *, /, min, max. round, etc. 

• Oscillators: such oscillators as wavetable, sine, impulse, saw, pulse, formant, etc. 

• Noise: such as white, pink, brown, clipped, etc. 

• Filters: such as resonator, one pole, two pole, low pass, high pass, band pass, band 

reject, butterworth, integrator. 

• Controllers: such as envelope gen, trigger, trigger delay, gate, sequencer, etc. 

• Amplitude Operators: such as compander, normalizer, limiter, stereo and quad pan 

• Delays: such as 1, 2, and N sample delay line with or without interpolation, comb filter, 

all pass, multi tap, time domain pitch shift, ping pong. 

• Frequency Domain: such as FFT, inverse FFT. 

• I/O Adaptors: read and write adapters on top of signal buffers, disk, and hardware audio 

ports. 

From the list above, we can see that the objects available by SuperCollider are varied in 

purpose.  With this array of methods available, SuperCollider is well suited to anyone using 

additive, subtractive, AM, FM, or granular techniques. 

SuperCollider’s strengths are its high level language (See Listing 9 in Appendix A for an 

example), which makes it very useful for quick prototyping and ease of use by people not used 

to lower level programming languages such as C or C++.  Also the huge number of signal 

processing units included makes it very flexible for creation of many audio synthesis methods.   

SuperCollider included tools for graphical user interface creation, which makes it easy for users 

to interact with the algorithms they create.  SuperCollider only runs on a Power Macintosh OS 9, 

with no plans to port to Windows, or any UNIX workstation.  There is no provision to allow 

extension or addition of unit generators.  SuperCollider only allows programming in their 

scripting language and provides no bindings for C or C++ libraries or applications.  This makes 

it very difficult to integrate into the types of applications listed in the requirements section.  At 



46

the beginning of this thesis work, SuperCollider was a commercial product.  Now it is free, but 

the source code is not available yet, and the license has not yet been announced.  At this point, 

there has been no mention of an OSI-approved license. 

Virtual Audio Server (VAS) 

The Virtual Audio Server (VAS) is a toolkit created at the Naval Research Laboratories 

(NRL).  VAS was designed to facilitate exploration of the problems associated with designing 

virtual sonic environments (VSE) [Fouad00].  The focus in this toolkit is on the administrative 

side of setting up system hardware such as speaker arrays and driving them with the appropriate 

audio signals from software.  As such, VAS includes pluggable “localizers”. 

VAS defines a localizer as some transform than takes an audio signal as input, processes it, 

and outputs the resulting signal to the speaker array.  Ideally the transform is such that the audio 

output sounds to the human ear as if each audio source it emits from a point in 3D space.  VAS 

includes 3 localizers by default:  

1. Panning, which is simple and inaccurate.  The panning technique calculates the sound 

level at each speaker in the array and attenuates the sound source’s audio signal by that 

amount for each speaker. 

2. VBAP, or Vector Base Auditory Panning, is more accurate and works in three 

dimensions.  VBAP is a three-dimensional spatialization technique that uses speaker 

panning.  The technique chooses three speakers out of an arbitrary number of speakers 

and pans an audio source between them.  This technique results in spatialization of an 

audio source in three dimensions provided that the speaker array is three-dimensional.  

Because this technique simulates the sound field and offers no audio synthesis 
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capabilities, effects such as propagation of sound through air cannot be recreated.  

VBAP works best with a large number in the speaker array [VBAP]. 

3. HRTF, or Head Related Transform, is the most accurate but also most expensive.  

HRTF uses a technique called Perceptual Synthesis to render sound that closely models 

what a user’s ears would hear [HRTF]. 

Each localizer is selectable by the user; also the user is able to supply their own localizer if 

they wish to experiment.   

VAS was implemented in C++ and runs on the IRIX operating system by SGI.  VAS 

provides two libraries, one for local execution, and one for execution using a sound server.  VAS 

has many good features, in particular for VSEs.  It allows researchers to try different algorithms 

and loudspeaker configurations with no change to the VAS framework.  VAS is scalable from 

headphones to small speaker arrays to arbitrarily large speaker arrays.  With this built in 

functionality, VAS is very flexible.  VAS is limited by IRIX’s AL library, which only supports 

up to 16 sounds.  VAS is primarily a research tool, which could imply that it is not ready for 

production use.  Also at the time of this writing no version was available for download, and the 

license is unknown. 

Virtual Sound Server (VSS) 

The Virtual Sound Server (VSS) is a proprietary audio toolkit developed at the National 

Center for Supercomputing Applications (NCSA).  According to [VSS], “VSS is a platform-

independent software package for data-driven sound production controlled from interactive 

applications.”  The work in VSS was derived from a tool called HTM, which is a framework for 

real-time sound synthesis controlled via network.  As a result, VSS is also controlled by network 

connection.  VSS offers control of software synthesis, simple sample playback, and provides 
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abstraction to other synthesizers such as MIDI, Max, and Open Sound Control (OSC).  VSS 

claims to be platform independent but currently only offers SGI IRIX and Linux versions. 

To use VSS, a server process must already be running.  A client application connects to it 

over the network, after which the client can direct the server to perform sound related tasks.  For 

each sound the client allocates, the server gives back a handle to the sound, which the client uses 

to manipulate that sound.  This practice of referring to sounds by handle is common in most 

sound systems whether they are accessed over a network or not.  VSS offers a higher-level 

construct on top of each sound or group of sounds called “actor”.  An actor is also manipulated 

using a handle, and the actor is used to specify particular audio synthesis methods.  In effect, 

actors are used to group and position sounds.  Like sounds, actors can accept messages that 

define control parameters.  The VSS client or other elements such as actors can receive these 

messages.  A data flow is defined so that actors can send messages to other actors without client 

intervention.  The client ahead of time can define these actions.  Actors process real-time input 

and output in the form of audio or MIDI.  All network connections in VSS are masked by 

higher-level client-side function calls. 

VSS defines a data format to facilitate data driven applications called the AUD format.  This 

allows separation of sound logic from the main application code.  Benefits of this are modularity 

and the ability to change the sound logic without recompiling the application.  The AUD format 

maps application events to sound procedures. 

In conclusion, the VSS is a high level toolkit aimed at virtual environment application 

programming.  VSS offers a range of audio synthesis methods under a fairly high level interface 

controlled by event messages.  It is limited by the number of platforms it supports, currently 

running on only two types of UNIX operating system.  For true portability, application designers 

will need to modify VSS or look elsewhere.  Another limitation is that VSS only offers 
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client/server control via network.  This limits VSS to high-end applications needing multiple 

computers, or one computer with two processes communicating via the operating system’s 

TCP/IP stack.  This is less efficient than direct access of the sound in the same application 

process space.  The VSS programming interface is general enough that the VSS client 

implementation could theoretically be extended to include the server communicating and 

running in the application’s process space.   However this option was not provided at the time of 

this writing.  VSS does not offer an interface for defining arbitrary audio synthesis algorithms, so 

it is not extensible by developers.  Some applications may need a finer grained toolkit offering 

more direct control with lower level access.  The high level aspect, while a benefit to some, 

could also be viewed as a limitation that restricts applications into limited methods of sound 

manipulation.  VSS is specialized for event based message triggering of pre-programmed audio 

synthesis methods.  Applications needing to redefine synthesis methods or do things outside of 

the scope of VSS may have difficulty.  Even though VSS has limitations, it is still very useful for 

typical high-end virtual environments and sonification applications developed for the Linux and 

IRIX operating systems.  Lastly, the largest limitation with VSS is the license, which currently is 

restricted to single user non-commercial use, cannot be redistributed, and derivative works 

cannot be publicly shown. 

Digital Instrument for Additive Sound Synthesis (DIASS) 

The Digital Instrument for Additive Sound Synthesis (DIASS) is a tool created jointly by 

Argonne National Laboratory (ANL) and University of Illinois at Urbana/Champaign (UIUC) 

[Kaper98].  DIASS is an audio synthesis tool used to sonify scientific data on Argonne's high 

performance supercomputer at the Center for Computational Science and Technology (CCST).  
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It operates with additive synthesis, a technique that can create arbitrarily complex sounds, and it 

can be parallelized across multiple processors. 

Using additive synthesis, DIASS is able to offer a very flexible means of sonification.  As 

we mentioned before, additive synthesis can overwhelm the user with the number of data inputs 

needed.  This also means that additive synthesis can sonify very complex processes containing 

many degrees of data.   

DIASS consists of two parts: an editor and an instrument.  The editor provides a GUI for 

preview and authoring of individual sounds and a script reader, which takes data input from a 

script.  The instrument responds to messages from the editor.  The instrument is capable of 

playing an arbitrary number of sounds where each sound can be made of an arbitrary number of 

partials.  Each partial can be controlled up to twenty-five ways.  Some of the controls are static 

such as start time, duration, and phase. Other parameters are reverb and echo.  Some of the 

controls are dynamic and include envelope, panning, amplitude modulation (tremolo), and 

frequency modulation (vibrato).   

Because additive synthesis can present the user with a huge number of inputs to control, 

DIASS offers macros to perform global operations over collections of sine waves.  For example, 

adjusting the loudness of a sound should affect all partials.  Also because DIASS primarily uses 

additive synthesis with many voices, it is computationally intensive and requires a large amount 

of memory.  The idea behind the design of DIASS is to use as much computing power as is 

available.  The instrument comes in sequential and parallel versions.  The parallel version uses 

MPI, a message-passing library.  MPI facilitates parallel computing across many nodes, which 

are computing units such as computers or running processes [MPI].  Parallelism is implemented 

at the sound level, not at the sound partial level.  A bottleneck exists with this approach in that 

after every sound is computed, each node must deliver the result to a single “mixer”, a computer 



51

that combines each sound together for final output for listening.  DIASS does not currently run 

in real-time, but this is a feature that will be added in the next release. 

Strengths of DIASS include a massively parallel sound renderer utilizing additive synthesis, 

which is an audio synthesis method known for its ability to handle many data inputs 

simultaneously.  DIASS is implemented in C, and this could be a potential limitation since audio 

synthesis algorithms are object oriented by nature.  A language like C++ could provide built in 

language features that would better represent the design of DIASS.  The next version of DIASS 

promises to be implemented in C++.  The main limitation of DIASS is that it does not currently 

run in real-time.  The parallel version of DIASS would not be suitable for most usersespecially 

individualsbecause of the size and/or number of machines required to run it.  DIASS only 

supports additive synthesis methods, plus a few extra techniques such as wave modulation to 

manipulate the additive synthesis generated sounds.  Wavetable and other forms of audio 

synthesis are not advertised features.  Additive synthesis is very costly in terms of processor 

usage compared to other synthesis techniques such as wavetable and modulation synthesis.  The 

reason is that additive synthesis methods require as many simultaneous voices as the degree of 

complexity of the waveform.  In short, additive synthesis does not scale well on a given system 

when complex sounds are needed.  Most VE and music applications need complex sound.  

Lastly, DIASS is not available for use outside its authors and their affiliates.  In conclusion, 

DIASS is a very flexible tool for additive synthesis, however it does not offer other forms of 

audio synthesis making the tool not useful in certain application domains. 

OpenAL 

OpenAL, the Open Audio Library, is an effort to create a vendor-neutral, cross-platform API 

for interactive three-dimensional (3D) spatialized audio [OpenAL].  Two-dimensional concepts, 
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such as panning, are considered “legacy” and are not supported.  OpenAL’s primary application 

audience is 3D entertainment VEs (such as games) and other popular multimedia applications.  

OpenAL is currently supported by Creative Labs [Creative], but originally began with Loki 

Entertainment, a Linux-based game company.   

OpenAL aims to be the OpenGL of audio.  OpenGL is a standard real-time graphics API that 

abstracts every detail of computer graphics functionality needed by 3D applications.  OpenGL 

provides a vendor-independent open standard that anyone may implement.  With its well-

designed API and open nature, OpenGL is an industry standard and is used in thousands of 

applications ranging from commercial to research.  Similarly, OpenAL attempts to emulate 

OpenGL by creating an open standard audio API that anyone may implement.  There is a UNIX 

version (Linux and IRIX) created by Loki Entertainment, and a Win32 and Mac OS X version 

created by Creative Labs.  The version by Creative Labs includes support for their EAX 

environmental audio function [CreativeDev]. 

A typical application will begin to use OpenAL by opening an OpenAL sound device.  Then 

a context is allocated and associated with the device.  With the context allocated, the 

programmer can create sound buffers and sound sources.  The sound sources are the “sound 

objects”, and the buffers are the source data to the objects.  The sound objects in OpenAL 

support point and directional 3D rendering that have the ability to play once, or loop 

continuously.  Object state can also be manipulated to affect sound object parameters such as 

distance attenuation, orientation, volume, pitch, and filter. 

OpenAL provides an object-oriented C programming interface for spatialized sound objects.  

The interface allows a programmer to specify sound object positions and a listener in three 

dimensions.  Underneath the API, OpenAL is a multichannel processing system for the synthesis 

of a digital audio stream.  It offers a fixed pipeline of digital signal processing algorithms to send 



53

wavetable data through.  The digital oscillator in OpenAL generates an audio signal from 

wavetable data and has a few options that the user can set.  For example, the user can set the 

speed of the wavetable traversal to affect the pitch of the sound source.  The user can also 

confine the traversal of the wavetable to once or infinite, for a “one-shot” or a looping effect, 

suitable for sound effects or ambient music and sounds respectively.  After the wavetable sound 

is generated, it travels through a series of processors for 3D spatialization including 

environmental effects, reverb and echo, Doppler, and distance attenuation. 

A strength of OpenAL is its multi-platform support.  It covers almost every major platform 

including, Windows, Macintosh, Linux, and IRIX.  Another strength is its open sourced, usable 

sample implementations.  OpenAL’s license has been designed so that anyone may implement a 

version of it.  As an added benefit, Loki and Creative labs offer free LGPL [OSI] (OSI compliant 

license) sample implementations.  OpenAL is very useful to simple virtual environments (VE) 

such as most VE entertainment applications.  It provides wavetable synthesis with a small set of 

processing algorithms useful to 3D spatial audio rendering.  Limitations of OpenAL are that it 

only supports wavetable synthesis and does not support traditional audio rendering; its 

philosophy is hard-coded to 3D spatialized wavetable audio.  Considering OpenGL, OpenAL 

does not compare as a generic audio tool.  It is specialized to the, albeit very common, use in 

simple spatialized sound object triggering.  OpenAL cannot be extended to support more 

advanced synthesis methods, nor can it support restructuring of the audio pipeline.  In 

conclusion, OpenAL has its place as a very useful tool, yet is restricted to a subset of application 

domains listed in the requirements section of this paper.  For sonification, OpenAL is limited by 

its support of only wavetable synthesis.  For interactive composition and performance, OpenAL 

does not offer enough features in their processing pipeline to handle the range of dynamic effects 

desired in music. 
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PortAudio/PABLIO 

PortAudio [PortAudio] is a very simple developer tool for streaming digital signals to the 

audio port of the computer.  It offers a cross platform C API for audio streaming.  The features 

of PortAudio are that it is fast, has a very small code footprint, and runs on every major 

computing platform.  Under Windows, it supports ASIO (very low latency) [ASIO], 

DirectSound (low latency), and Windows Multimedia Extensions (high latency).  Under Unix it 

supports the OSS API that is also implemented by several system audio drivers including ALSA.  

Also supported are Apple’s Mac OS X Core Audio and Sound Mgr for OS7-9, SGI’s IRIX AL 

library, and BeOS. 

 
Figure 18.  PortAudio Producer-Consumer diagram. 

PortAudio operates with a callback architecture.  With this method, the user registers a 

function with PortAudio, and whenever PortAudio needs more data, it calls the function to get 

the data.  Data requests happen asynchronously to the execution of the application code, in a 

producer-consumer fashion (Figure 18).  In producer-consumer, PortAudio is the consumer, and 

the application is the producer.  PortAudio asks the application for more data asynchronously as 

needed.  The application must either synchronize with this asynchronous callback process, or it 

needs to be written such that all audio code exists in the callback function.  PortAudio also 

provides a blocked polling interface, called PABLIO (for Port Audio BLocking IO), which the 

user calls repeatedly similar to the network sockets send() function.  Currently this only works 
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in blocking mode, making it unsuitable for use in a single-threaded graphics application.  The 

time waiting on the blocking call could seriously impact the draw and calculation update rates 

needed for the application.  One solution could be to reduce the audio block size sent per frame.  

This is not a good solution since it could induce dropouts (data starvation at the audio hardware) 

if lowered too far or if the system needed to do some unexpected work such as during resource 

loading.  In short, the first callback style interface is usually the best and is PortAudio’s default 

interface.  There is a third option that extends the idea of the PABLIO method and that is to 

make an interface to PortAudio that is non-blocking.  A non-blocking interface to PortAudio has 

been developed by the author and will be presented in the Subsynth section of this paper. 

PortAudio can be especially useful for real-time software audio synthesis applications.  

Because of its low latency and overhead, it is a good low-level, cross-platform interface to audio 

hardware.  PortAudio was developed by people on the music-dsp mailing list, a group dedicated 

to music digital signal processing.  This tool is currently in use by many software synthesizers 

used in music composition tools such as Twelvetone Systems’ Cakewalk [Cake], and Steinberg’s 

Cubase [ASIO].  The software synthesizers are typically implemented as VST (Steinberg) or 

DirectX (Microsoft) plugins developed by third-party developers.  Plugins are components that 

offer a common interface useful among a variety of software that support them.  Also several 

independent open source composition tools and sound utilities use PortAudio. 

Strengths of PortAudio include cross platform support and low latency support on certain 

platforms.  PortAudio would make a very good audio port hardware abstraction for higher-level 

audio toolkits.  However, PortAudio has some limitations.  The callback interface might be 

awkward for certain uses, but fortunately PABLIO is included for polling style IO.  Since 

PABLIO only supports blocking reads and writes, an application needing to do many other 

things may suffer in performance.  The final limitation in PortAudio is that it only handles raw 
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PCM audio streams.  No higher-level audio rendering primitives are available.  PortAudio will 

not work as-is for audio synthesis, but it will work well as a port abstraction for audio synthesis 

tools such as Subsynth. 

Several tools have been investigated for their use in sonification of VEs, scientific data, and 

musical applications.  PortAudio does not solve the job, but it looks like a good tool to use to 

abstract the audio for cross platform support.  The other tools, while they have their strengths, 

are all specialized to their own goals and have one or more features that cause them to be 

unsuitable for our needs as defined in the requirements section (see chapter titled 

“REQUIREMENTS OF AN AUDIO SUBSYSTEM FOR INTERACTIVE APPLICATIONS”).  

The next section introduces Subsynth, a new tool that attempts to address these issues. 
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CHAPTER 5 SUBSYNTH 

Subsynth is a subsystem for sound synthesis designed for use by many types of higher-level 

applications such as virtual environments, interactive music composition and performance, and 

scientific sonification.  It balances generality, performance, scalability, and portability with the 

goal to provide consistency across computing locations, general use across many application 

domains, and application survivability with the ability to adapt transparently to new hardware.  

The design of Subsynth is inspired by the unit generator concept (Figure 19) described earlier in 

the section “Unit Generator Language”.  We believe that a synthesizer designed with the unit 

generator concept will make an interesting research tool as well as provide a useful generic layer 

upon which higher-level audio applications and libraries could be built.  We have chosen to 

build Subsynth in software in order to decouple the hardware from the toolkit.  This provides the 

ability to move transparently to new hardware and operating systems.  Here we will present the 

design and implementation of Subsynth, which currently offers the core audio synthesis 

framework definition as well as concrete extensions able to be used for audio synthesis today. 

 
Figure 19.  A Subsynth module. 
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Conceptual Design Approach 

Creating software architectures that support flexible configuration can be difficult.  

Inventing something completely new is not practical nor will it always produce the best design.  

We can look at the unit generator concept described earlier (Figure 19) for inspiration.  Modeled 

after unit generators, each Subsynth module has n input terminals, and p output terminals. 

Terminals pass data in a common format for compatibility between modules.  Successful 

execution of the unit generator concept can be seen in existing hardware modular analog audio 

synthesizers such as the one shown in Figure 20 and in existing user-level music composition 

tools such as [Fruityloops] and [Propellerheads].   

 
Figure 20.  Front panel of a hardware modular analog synthesizer.  

The original hardware modular analog synthesizers were designed in small reusable units 

(Figure 21) hooked together with patch cables (Figure 20).  In these figures, the patch cables 

connect the input and output terminals, while each module has static parameters that can be 
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adjusted manually with knobs.  The signals traveling between these modules are in a 

standardized format so that interfacing can be done generically without regard to the type of 

signal.  This powerful design even allows audio outputs to be used as control inputs. This means 

that a signal can be modulated by any other signal. 

 

 
Figure 21.  Modular analog synthesizer unit generators. 

To support the interoperability between the various unit generators, input and output 

terminals of each unit are standardized.  This unit generator architecture is very flexible and 

open, designed for arbitrary user configurations, generic interoperability, and creative freedom 

for extension and design of new audio synthesis methods.  Building on this powerful concept, we 

chose to design Subsynth in a similar vein. 

The Subsynth system design consists of three components: core audio framework 

implementing the unit generator concept, configuration allowing methods to specify audio 

synthesis networks, and task management used for execution of the configured audio synthesis 
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networks.  In the next sections, we explore the design and implementation of these three 

components. 

Core Audio Framework 

This part of the design seeks to solve most of the functional goals set out in the requirements 

section.  It covers unit connectivity and data transport and is what provides the generic 

configurability we desire. 

The audio framework in Subsynth is based on the unit generator concept.  It allows arbitrary 

audio synthesis algorithms to be built, allowing Subsynth to serve as a very customizable audio 

tool.  The unit generators in Subsynth are called modules.  Just like theoretical unit generators, 

Subsynth modules take continuous and static input and give continuous output.  Continuous 

input can be thought of as the audio or control signals, while static input can be thought of as 

parameter setup.  Some modules are for generation of signals.  Others are for transformation of a 

signal through methods as simple as inversion or summation and as complex as filtration or 

convolution. 

Each module can have any number of input and output terminals, or connecting points, as 

well as any number of static parameter settings (Figure 19).  Terminals may be connected 

together using a Connection (Figure 22), which acts as a sort of glue to connect two 

terminals.  Terminals are simply connecting points, while the Connection is the actual medium 

where data travels.  The connection of terminals allows arbitrary setup of a sound network, a 

graph resulting from all connected modules.  After connection, data is propagated to and from 

the terminals using a storage queue located in the Connection object that may be filled or 

emptied by either Terminal.  This signal transport medium serves both audio and control data 

purposes.  Module parameters are then accessed and set through a generic interface so that users 
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of Subsynth do not need to rely heavily upon interfaces that are proprietary to each separate 

module. 

 
Figure 22.  Subsynth unit generator design [UML].   

Conceptually, Module is a black box containing a signal generator (source), processor, or 

an output (sink). Signal generation could happen by a mathematical function or a procedure (for 

example: sine, cosine, saw, noise, ADSR envelope), from audio samples (wave, mp3 file), or 

even from a network stream.  Processing units could be defined in many ways.  Some common 

filters include DC offset, gain, pitch shift, reverb, Doppler shift, localizers for 3D positional 
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sound, and distortion [Steiglitz96].  An output sink represents a route to the computer's sound 

hardware or possibly to an output file.  With the basic audio generalizations in Figure 19, and 

Figure 22, Subsynth's users will be able to specialize their own Module types as needed.  

Configuration 

To specify and arrange sound networks, we did not want to tie the user to one method.  

Therefore, configuration in Subsynth is decoupled from the audio design.  The audio design by 

itself already provides a well-defined API for configuration allowing direct connection of 

modules using native C++ method calls.  This gives the programmer fine-grained access to 

details when needed.  In addition we want to facilitate higher-level configuration, such as 

through scripts, which allow a more data driven method to specify arrangements of modules.  

We call these higher-level components for configuration builders. 

Builders are objects that know how to construct an audio synthesis network.   A builder 

should be thought of as a factory [Gamma95], which is basically an object that knows how to 

create something based on some input request.  Builders have a one-way dependency upon the 

audio design so that new builder designs are possible without affecting the existing toolkit.  This 

decoupling is useful to users who may want to implement their own builder objects to extend or 

replace functionality with their own. 

Builders are also useful so that audio synthesis networks may be saved to and loaded from 

disk.  This has important uses: authoring tools such as the one shown in Figure 23 could be built 

to allow users to create new audio synthesis algorithms and save them for use later.  Audio 

applications can then load these definitions instead of “hard code” the algorithm in software.  

This provides flexibility and helps to keep a separation between the application code and the data 
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that defines a particular audio synthesis algorithm.  This idea facilitates “data-driven” design 

[GameGems1], which is important when creating complex applications. 

 
Figure 23.  Audio synthesis network authoring tool. 

Task Management System 

We have designed a concept called the runner, which is responsible for executing the 

modules in a given synthesis network.  The runner is decoupled from the main audio system in 

case the user would like to use or implement a different solution.  For example, new runner 

systems can be customized to operate the synthesizer optimally on inexpensive consumer PCs or 

high-end workstations and supercomputers.  The task management system also includes utilities 

for performance measurement that could be used by the scheduling system and could be 

displayed to evaluate a particular scheduling algorithm. 
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Implementation 

In this section, we present the specific implementation of the design discussed above.  First, we 

present external subsystems we decided to rely upon in order to abstract Subsynth away from the 

system hardware and the operating system.  Next we present how we implemented the unit 

generator design, which is our core audio framework.  Finally, we present our own specific 

extensions to the core that we include with the toolkit that ultimately provide the features that 

users will find useful about the toolkit. 

Technology Choices 

Part of our initial research work for the implementation included a search of available 

technologies to use under our system’s design as outlined above.  We knew early on that 

Subsynth should be as portable as possible.  Therefore it was understood that Subsynth would 

need to sit upon, or depend on, some system abstractions. From the requirements, we needed the 

following: 

• Threads 

• Audio Output 

• Configuration File Reader 

As we began the design process we evaluated many system abstractions. We selected the 

following specific implementations: 

VaPoR 

VaPoR is a portable runtime layer that comes with the VR Juggler project [VRJuggler]. It 

abstracts system threads, NSPR [NSPR] threads, BSD sockets, and native serial port IO.  We 

choose VaPoR because of our previous experience with it and other sync and threading 
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abstractions.  VaPoR offers a C++ interface on top of several subsystems, which provides an 

easy to use interface with the most portability. 

PortAudio 

PortAudio attempts to abstract an audio system and currently provides implementations for 

each of the major consumer platforms: Win32, MacOS, IRIX, LiNUX, and other UNIX 

platforms.  PortAudio has a simple streaming audio interface and is in use by many real-time 

audio tools.  We chose PortAudio because it is very small and efficient compared to other 

streaming interfaces we looked at (OpenAL).  In our tests, PortAudio had noticeably less latency 

and less noise than OpenAL. 

CppDOM 

CppDOM [CppDOM] is a fast, lightweight XML [XML] tokenizer.  It offers an intuitive 

C++ DOM (Document Object Model) representation and is very easy to integrate with a project.  

Subsynth uses XML files to parameterize attributes.  Parameterization of attributes away from 

the code allows them to be changed without recompiling.  We chose CppDOM because it is very 

lightweight and offers an easily traversable DOM tree in memory.  This allows us to store 

configuration information in the DOM tree structure if needed.  Other options we looked at were 

the VR Juggler JCCL [VRJuggler], Xerces C [Apache], and writing a custom configuration file 

parser.  Xerces and JCCL are too complex for our needs, and writing a custom file parser had no 

benefit over CppDOM. 

These three tools are the only external subsystems that Subsynth depend upon (besides 

native C++) and are referred to as Subsynth’s dependencies.  Subsynth is implemented only in 

terms of these dependencies and C++.  The use of C++ and these tools facilitates the portability 

of Subsynth. 
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Core Audio Framework 

Implementing the Module, Terminal, Connection paradigm was a matter of filling in the 

code behind the interface designs presented in Figure 22.    For example, each module has an 

update() method that is invoked to cause the module to perform a block of processing on its 

terminals.  See Listing 1 for an example of what a typical Module update() method looks 

like.  Update is a method that belongs to every module, that when called attempts to do a block 

of processing for that module’s terminals.  Modules also have open and close methods, as well as 

methods for accessing and configuring terminals. 

void SinkModule::update() 
{ 
   // if connected, then suck data from the queue  
   // and throw it away... 
   if (mMonoAudioInput->isConnected()) 
   { 
      unsigned int size = 0; 
 
      if (!mMonoAudioInput->empty()) 
      { 
         SampleBuffer1f* read_buf = mMonoAudioInput->front(); 
         size = read_buf->size(); 
         mMonoAudioInput->pop(); 
         SampleBufferRepos::instance()->putback( read_buf ); 
      } 
 
      // record how much was processed... 
      this->setPutCount( size );· 
   } 
   else 
   { 
      this->setPutCount( 0 ); 
   } 
} 

Listing 1.  A simplified update() procedure.   

In implementing the Module, Terminal, and Connection code, several internal issues 

appeared: how to represent the digital signals, how to efficiently allocate blocks of memory for 

signal data, how to allow asynchronous processing of modules in order to support multiple 

processors.  Next we present how these implementation issues were addressed.  The 

Producer/Consumer pattern is how we addressed asynchronous processing, the FlyWeight 
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pattern is how we addressed fast allocation of large objects, and SampleBuffer is how we 

represent our data signals. 

Producer/Consumer Pattern 

One problem we had to solve was how to transport the data between modules.  Since we 

want to be able to execute modules in any order and in parallel with other modules, we know 

that the module will need some way to cache the data for its connecting module to receive 

asynchronously.  In distributed computing, a common design pattern to solve this problem is the 

Producer/Consumer pattern [ProducerConsumer] (Figure 24).  Design patterns describe simple 

and elegant solutions to specific problems in object oriented software design [Gamma95].  In 

Subsynth, we have one producer module and one consumer module, and we use a queue as a 

drop/pickup point for the audio signal data transferred between the two.  To give us control of 

production we use a watermarking system.  The producer module polls the queue's watermark, if 

not high then the producer will push data into the queue.  The consumer can asynchronously poll 

the queue for data, if the watermark is not too low then it will obtain the object for reading. 

 
Figure 24.  The producer consumer pattern. 

The Producer/Consumer pattern coordinates the asynchronous addition and removal of 

information or objects. Generally, the Producer/Consumer pattern uses the Guarded Suspension 

pattern [GuardedSuspension] or the Balking pattern [Balking] to manage the situation of a 

Consumer object wanting to get an object from an empty queue.  In Guarded Suspension a 
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method call suspends execution until a precondition is satisfied. In Balking a method simply 

returns if a precondition is not satisfied. The implementation of the Producer/Consumer pattern 

in Subsynth is called SampleBufferQueue (Figure 25), and it uses the Balking pattern in 

order to give up processor time for other tasks to execute.  The precondition we use in our 

Balking implementation is a watermark system so that queues do not become too full or too 

empty.  The object in Subsynth that is produced and consumed from the 

SampleBufferQueue is called the SampleBuffer, which we explain in the next section. 
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Figure 25.  Producer/consumer implementation in Subsynth [UML]. 

SampleBuffer 

The SampleBuffer in Figure 25 is the basic medium in which we store digital audio and 

control signals.  It represents a block of audio signal samples.  When a module looks for input to 

process, or when it generates some output, it produces (or consumes) a SampleBuffer.  Using 

a block of data rather than individual sample values introduces some latency, but it increases 
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processing efficiency because the overhead of function calls, conditional expressions, and 

synchronization points become amortized over the length of time it takes to process the block.  

The longer the block, the more efficient processing can be.  However, longer blocks lead to 

longer reaction times to user input.  The size of this block represents a tradeoff between 

efficiency and latency in response time and is a parameter that is configurable by users of the 

Subsynth toolkit. 

Flyweight Pattern 

Subsynth needs to be flexible, but this should not impact its performance.  If implemented 

naively, production and consumption of the SampleBuffer blocks could impact the system's 

performance negatively.  There is a design pattern for fast allocation and destruction of large 

objects called the Flyweight pattern [Flyweight].  In Subsynth, we always allocate and deallocate 

SampleBuffer objects from our own managed memory pool of objects called the 

FlyWeightPool (see Figure 25).  This allows the system to reuse objects rather than allocate 

and deallocate through the system memory manager, a process that can be slow in this case 

because it is too general. 

Subsynth Audio I/O Streams Utility Library 

To help facilitate code reuse, we also wrote an audio I/O streams library. These streams are used 

mainly in the specialized source and sink (output) module types (Figure 26, Figure 27).  Our 

audio streams library was modeled after the standard C++ iostreams interface [IoStream], and it 

provides a utility library that extensions to the core can use to read or write audio data from a 

computer’s file system or network. 
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Figure 26.  Audio Input Streams  [UML]. 
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Figure 27.  Audio output streams [UML]. 

Audio Format Utility 

We implemented data conversion routines between common audio data formats including 

any combination of the following five formats: unsigned/signed 8- and 16-bit integer and 32-bit 

floating point.  For speed and generality, we implemented this using template meta-programming 
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[Alexandrescu01], creating generic C++ template code that handles the twenty-five conversion 

cases with no loss in runtime performance (Listing 11 Appendix B).  With this technique, only 

the code needed for each conversion case is compiled in.  Currently, only the iostreams in 

Subsynth need conversion since any format may be requested to open each stream, although 

future additions may take advantage of this utility.  

OSC-Concept Library 

Some module and stream implementations need access to mathematical functions to generate 

signals such as noise or sine waves.  We took these basic digital oscillator concepts and created a 

library of them for inclusion by authors of new modules or stream implementations.  We call 

each oscillator (OSC) object a concept because it embodies a well-defined independent periodic 

function.  There are seven lightweight OSC-Concept objects currently implemented – triangle, 

sine, saw, square, white noise, pink noise, and ADSR.  Each OSC-Concept is written as a simple 

standalone object depending only on C++. 

Included Modules 

We include several unit generators in Subsynth in order to test system performance and 

baseline functionality.  These new specialized types (Figure 28) include: 
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• Two digital oscillators.  One for wave-table lookup, and one for procedurally generated 

functions. 

• Operators for multiplication and summation.  These can be used for modulating a 

signal’s amplitude by another, or for mixing several signals together. 

• High and Low pass Filter.  These remove high or low frequencies from a signal, 

resulting in thin or muffled sounds. 

• Signal mixer and splitter.  This can add several streams into one, or replicate one 

stream into many. 

• Audio Stream Adaptor.  This adaptor module can read from and write to any 

AudioIOStream. Currently this means .wav or .raw PCM files are supported.  In the 

future, a network stream could be created and used with this module. 

• OSC-Concept Adaptor.  This adaptor module can read from one of the procedural 

signal generator types in the OSC-Concept library described in the previous section. 

• Envelope generator.  This generates a signal that can be used to provide the effect of 

attack, decay, sustain, and release when modulated with another audio signal. 

• Sink.  This provides output to audio hardware. 
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Figure 28. Subsynth Modules [UML]. 

Using the components included with Subsynth, many audio synthesis methods may be 

created.  For example, the digital oscillators support Wavetable lookup synthesis in which the 

wavetable can be initialized from either disk, AudioIStream, or from one of the OSC-



76

Concept generator types described above.  To support frequency modulation synthesis, the 

digital oscillators support a frequency control signal input.  The input works with any 

SampleBuffer audio signal in the range of –1 to 1, and is a linear input (converted to 

exponential frequency scale 20 – 20000Hz internally).  The addition operators facilitate additive 

synthesis and wavestacking.  The multiplication operators can be used to support amplitude 

modulation synthesis.  Subtractive synthesis is possible through any of the filters.  These five 

audio synthesis methods, and combinations of them, offer a large variety of possibilities.  New 

audio synthesis methods are possible by adding new user defined module types to the system.  

This extensibility is made possible through our generic audio framework design, and is what 

enables Subsynth to be a general tool to support many audio synthesis methods. 

Static control parameters on each module are also available for setting attributes such as 

amplitude, frequency, triggering, and stopping each sound.  Some modules have other static 

parameters such as envelope or filter cutoff.  Depending on the module, static parameters set 

defaults or interact with the control signal.  Parameters are usually how an application will 

interactively control Subsynth. 

Included Builders 

Builders are responsible for configuring a network of Subsynth modules.  Subsynth defines a 

one-way dependence of builders to the core audio toolkit (Figure 29).  In the figure, the builders 

(ModuleFactory, and SubsynthInstrumentBuilder) depend on the core audio framework design 

(Module and InstrumentModule).  The benefit to keeping configuration separate from the core is 

that the user is free to choose existing, or define new, methods of configuration. 
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Figure 29.  Subsynth Builder UML diagram. 

Each builder is responsible for the creation of “instruments”.  A Subsynth Instrument is 

an aggregate type that provides a façade [Gamma95] to a sub-graph of Subsynth modules.  This 

façade interface is derived from the Module interface so that an instrument module will appear 

the same as any other single module.  This way, users can expect to use these complex 

Instrument constructs in their graph designs. 

Internally, the instrument contains an arbitrary sub-graph of modules, but the user doesn’t 

need to worry about this, because this is hidden by the façade.  The façade (Figure 30) can be 

configured to selectively expose internal parameters, inputs, and outputs to the module sub-

graph contained within.  There are two Builder types that Subsynth currently provides to create 

Module objects: 
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• SubsynthInstrumentBuilder.  This builder reads an instrument definition data file, 

which is an XML file format that we have defined that configures an Instrument.  

This format includes ways to add the internal module sub-graph through the addition, 

configuration, and connection of individual modules.  In addition, the format allows 

configuration of the façade to expose sub-graph parameters, input signals, and output 

signals.  See Listing 10 for an example Subsynth instrument definition. 

• ModuleFactory.  This builder holds a collection of pre-registered modules.  To make 

ModuleFactory create a new module, a string is given that matches one of the pre-

registered modules.  The SubsynthInstrumentBuilder makes use of this module 

so that it can look up known modules from a given string in the XML file. 

 
Figure 30.  UML diagram for the Instrument type. 

Included Runners 

Once modules have been created and connected into an audio synthesis graph, they need to 

be processed regularly.  This is done by calling the module's update() method (Listing 1).  
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This method can read data from the module's input terminals, process it in some way, and write it 

to the output terminals. 

Normally, a design of this type is too slow to do signal processing. In Subsynth, audio 

signals are passed around in blocks of samples (Figure 31), rather than individual samples.  This 

allows us to amortize the cost of function call overhead over many samples.  In addition, the 

update() functions have multiple special cases to provide maximum performance for different 

states that the user can select.  For example, some possible cases we optimize for are the usage of 

audio rate, control rate, or parameter to control the generated audio.  Another set of cases we 

optimize for are in signal generation using no, linear, or cubic interpolation.  To illustrate, our 

WaveTableOsc module has four conditional cases, two for control rate, and two for static.  Of 

these, two are for linear interpolation, and two use no interpolation. 

 
Figure 31.  SampleBuffer data type. 
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If a module is not updated frequently enough, the chain of modules that receive data from it 

will starve.  This can cause stuttering or other disruptions to the audio output.  This implies the 

need for a scheduler, something that can produce an optimal execution ordering in which to 

minimize these starvation cases (given the Subsynth graph topology). 

We have provided a container in which to execute the audio synthesis network that we call a 

“Runner” (Figure 32).  A programmer using Subsynth is free to choose between using the 

provided Runner or calling update() within their own specialized runner.  A Runner is 

responsible for calling update() on all the modules in the network in the order that it 

schedules.  To facilitate scalability from low-end to high-end systems, Subsynth’s Runner uses 

threads to spread the update() execution load across multiple processors.  To make the runner 

flexible, it supports pluggable Scheduler objects (Figure 33), which define the scheduling 

algorithm to use.  The scheduling algorithm defines the order of execution, thread, and task 

dependencies.  Subsynth provides a default scheduler that can be replaced with any user-defined 

implementation.  For most customizations, programmers will not need to completely redefine a 

runner, they can just replace the scheduling algorithm to better fit their needs.  Next we discuss a 

few case studies, which illustrate usage of Subsynth, and some higher-level applications that 

benefit from Subsynth. 
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Figure 32.  Subsynth task management. 

 
Figure 33.  The Scheduler abstract interface. 
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CHAPTER 6 CASE STUDIES 

In this section, we will showcase three tools that have been built upon Subsynth.  The 

purpose of this is to illustrate the effectiveness of Subsynth as a generic audio synthesis 

subsystem for use by higher-level tools. These higher-level tools we showcase are: 

SubsynthMIDI, Sonix, and GAME.  SubsynthMIDI is a software MIDI interface on top of 

Subsynth that makes it able to be used by musical applications and also provides a limited sound 

object representation for sonification.  Sonix is a simple sound object library, providing simple 

control over sampled sound playback.  GAME is a music engine employing fractal techniques 

for generation of music events in response to input data from scientific applications. 

SubsynthMIDI 

SubsynthMIDI provides a MIDI implementation on top of Subsynth.  This interface to 

Subsynth is intended to enable musical applications.  Alternatively, it could be used for sound 

effects in sonification and virtual environments. 

 
Figure 34.  The SubsynthMIDI API. 

To provide the ability to switch between the computer’s native hardware synthesizer and the 

Subsynth software synthesizer, a MIDI abstraction was created (Figure 34) that could provide an 
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interface to either.  Several implementations of this interface were then specialized for each 

operating system, including one for Subsynth. 

<SubsynthMIDI> 
   <instrument channel="1" value="female-voc.inst"/> 
   <instrument channel="10" value="timpani.inst"/> 
   <instrument channel="3" value="guitar.inst"/> 
   <outputport value="pa"/> 
   <threads value="1"/> 
   <maxpolyphony value="6"/> 
   <blocksize value="512"/> 
</SubsynthMIDI> 

Listing 2.  Example SubsynthMIDI configuration file. 

The SubsynthMIDI interface is relatively simple, mirroring the MIDI specification.  The 

internal implementation supports arbitrary polyphony, trigger/release of notes, pitch, channel, 

and note velocity.  MIDI control messages are not implemented yet, but should be trivial to do 

so.  Because Subsynth is flexible, we decided to allow the SubsynthMIDI implementation to 

be configured with an XML file format (Listing 2).  This configuration file allows the following 

options: 

• Instrument to use for each of the 16 MIDI channels 

• Number of overlapping sounds to play at once (polyphony) 

• Number of threads to use for the synthesizer process 

• Block size of the sample buffers 

• Which audio port on the system to send audio data to. 

To test out the MIDI implementation, a music event scheduler called a Sequencer was 

created.  The Sequencer is responsible for dispatching music events to the Subsynth MIDI API.  

To fill the sequencer with music events, a MIDI file loader was created.  This file loader scans a 

MIDI data file (.mid extension) and sets up the Sequencer appropriately.  Using the Sequencer 

and SubsynthMIDI, we have successfully tested several MIDI files of classical and popular 

music available on the Internet. 
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G.A.M.E. Toolkit for Scientific Sonification 

G.A.M.E. is a music engine employing fractal techniques for generation of music events in 

response to input data from scientific applications.  This toolkit was needed to allow arbitrary 

sonification of scientific data, and to enable collaboration with other sonification researchers.  

The idea was to create a continuous stream of music that reacted with real-time response to the 

emerging scientific data as the user interacted with it.  The goal of this idea was to enable a sort 

of “wall paper” music that could be pleasant to listen to and would impart changes in mood and 

hopefully increase perception of the visualized data.  This toolkit is called G.A.M.E. to mean 

“Grammatical Atonal Music Engine”.  The “grammar” comes from the use of L-System rules, 

which typically model growth processes [Lsystem]; “atonal” means that we do not make any 

restrictions on use of pitch.  Previous tools mapped data values to specific sets of notes that 

sound pleasing to most people (in an attempt to create listenable music).  The G.A.M.E. system 

relies on the specification of a grammar to create listenable music.  This indirect mapping shows 

promise where earlier direct mapping efforts produced less desirable results [Bryden02].  This 

system enables listenable music sonification for many types of scientific data and other 

applications. 

The design has four parts: a generalized L-System framework, an L-System data file loader 

specialized for XML, a system for parameterization of the real-time application data, and an L-

System renderer specialized for SubsynthMIDI.  Unlike sonification software that uses MIDI to 

directly map musical parameters to data, the G.A.M.E. engine creates a music event stream via 

L-System algorithms.  Certain events in the event stream can interface with and then respond to 

the application data.  Next, we explain some background on L-Systems, and then present the 

implementation of G.A.M.E. 
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L-System Background 

An L-System is able to produce fractal patterns modeling growth.  Fractal patterns exhibit 

the growth of increasing detail that is obtained through a procedural definition [Mandelbrot77].  

The fractal growth in an L-System is expressed in terms of symbolic elements that are produced 

by iterating over production rules.  The series of elements that are produced are what we call an 

“L-string”.  Every L-System is defined by an axiom and a set of production rules.  The axiom is 

the initial L-string, and the production rules define match and replacement strings that specify 

how to “grow” that string.   

 
Figure 35.  L-System String Element. 

In G.A.M.E., each “character” in an L-System string is called an element.  Each element 

stores multiple parameters, allowing for grouping of related data (Figure 35).  G.A.M.E. uses this 

parameterized element for use as an event.  The L-string defines a list of events.  Specific to the 

G.A.M.E system, event types are defined that correspond to music.  The resulting string becomes 

a string of music events, and these music events may be mixed with other procedural events that 

apply application variables to various music states such as tempo, volume, timbre, and pitch.  

For example, an event could trigger or release a note while the event’s parameters would include 

pitch, velocity, and the channel to affect. 
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G.A.M.E. Music Engine Implementation 

The Lsystem class in G.A.M.E. stores the axiom and production rules (Figure 36).  After 

the class is set up, the user can tell it to apply the rules any number of times to grow the resulting 

L-string.  For music this usually means increasing the complexity or texture of the music. 

 
Figure 36.  L-System UML Diagram. 

The L-system data file format is defined using the XML DTD (XML Schema is also 

available) format and is constructed with the L-system axiom and a list of production rules 

(Listing 12). Each production rule has the option of either a regular expression match or an exact 

match. The “strings” in the format are actually vectors of <elt> nodes. Each elt node is like a 

character in a string, except that the elt node contains an extra data payload or parameters. This 

concept is also mirrored in the software. The G.A.M.E. L-System XML format is not tied to 

music.  Because of its general quality, it could also be used for other applications such as 

graphics. There are predefined element types that we use, however, that match our L-string 

renderer. 
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L-System elements are defined as music events. The first ring renderer is an event scheduler 

that operates on a string of L-System elements (or music events). The renderer turns these events 

into MIDI events that are sent to the computer audio device. For the scheduler to work, every 

element needs to contain at least a command followed by a starting time. The scheduler uses the 

starting time to determine when to execute the event, and it uses the command tag to determine 

how to execute it. Once it is executed, the other parameters are read. The renderer can be 

controlled by the application through a parameter system. These parameters can be referenced in 

the L-System XML format and then resolved on the fly as each event is executed. This allows 

application data to influence parameters in the music such as pitch, timbre, volume, and tempo. 

Currently, the number of parameters is partly limited by MIDI capabilities. We plan to use a 

software synthesizer in the future for a greater degree of control. A software synthesizer also will 

allow this work to run on any computer platform, enabling better collaboration with other 

researchers who may not have access to similar MIDI hardware. 

This technique is useful for selecting production rules based on data defined by the 

application. This allows a more coarse-grained approach to sonify macro-scale features in the 

data via the parameter system. This complements the fine-grained control for sonifying micro-

scale features with rhythm and motive changes. 

Sonix 

Sonix provides manipulation of sound objects on top of several audio APIs including 

Subsynth.  A sound object provides simple control over playback of sampled sounds.  Sound 

objects are useful to many simple virtual environment applications.  The interface to Sonix is 

kept very simple in order to get users up and running with sound as fast as possible.  It allows 

one to trigger, position, change volume and pitch, or to adjust a filter cutoff on 3D sounds.  
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Systems using this layer expect to be completely portable.  Sonix is reconfigurable allowing 

audio APIs to be safely swapped out at runtime without the dependent systems noticing.  

Reconfiguration 

Runtime reconfiguration of sound APIs can be useful so that the user can experiment with 

quality and latency differences of different hardware and sound APIs.  If no audio API is 

available on a given platform, application calls to Sonix are simply ignored. This gives the 

benefit that no special code application code is needed to enable or disable sound—it is all 

handled by Sonix. 

   // start sonix using Subsynth 
   sonix::instance()->changeAPI( "Subsynth" ); 
       
   // fill out a description for the sound we want to play 
   snx::SoundInfo sound_info; 
   sound_info.filename = "808kick.wav"; 
   sound_info.datasource = snx::SoundInfo::FILESYSTEM; 
 
   // create the sound object 
   snx::SoundHandle sound_handle; 
   sound_handle.init( "my sound for testing" ); 
   sound_handle.configure( sound_info ); 
    
   // trigger the sound 
   sound_handle.trigger(); 
   sleep( 1 ); 
 
   // trigger the sound using a different audio system... 
   sonix::instance()->changeAPI( "AudioWorks" ); 
   sound_handle.trigger(); 
   sleep( 1 ); 
 
   // trigger our sound object using different source data 
   sound_info.filename = "303riff.wav"; 
   sound_handle.configure( sound_info ); 
   sound_handle.trigger(); 
   sleep( 1 ); 

Listing 3.  How to reconfigure Sonix at runtime 

The benefit of this abstraction is that when something changes, application code does not 

need to be aware or do any special handling. Everything in Sonix is changeable behind the 

scenes during application execution. See Listing 3 for an example of how to reconfigure Sonix in 

C++. 
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Using Sonix 

Sonix only provides wavetable synthesis (see the section on Digital Audio Synthesis above).  

Even though it is not a complete audio synthesis package, Sonix is still very useful to application 

areas such as virtual environments needing access to 3D sound objects.  Here, we will provide an 

example of writing an application using Sonix. 

To setup a sound is straightforward as seen in Listing 4. Here, we use a snx::SoundInfo 

object to configure the sound object, which is accessed by a snx::SoundHandle object. 

snx::SoundInfo info; 
info.filename = "crack.wav"; 
info.datasource = snx::SoundInfo::FILESYTEM; 
 
snx::SoundHandle crack_sound( "crack" ); 
crack_sound.configure( info ); 

Listing 4.  Code to setup a Sonix sound 

To keep Sonix running, an update function step( float time_delta ) must be 

called repeatedly by the application. time_delta is the amount of time since step() was 

last called, and step() should be called within the application's frame function (Listing 4).  A 

frame function is one that is called in an application to update its state, usually many times per 

second. 

void frame() 
{ 
   time_delta = getTimeChangeInSeconds(); // use a system call, or  
                                          // other API to get your time 
delta 
   sonix::instance()->step( time_delta ); 
} 

Listing 5.  Call sonix::step() in the application’s  frame function. 

#include <iostream> 
#include <string> 
#include <snx/sonix.h> 
 
int main( int argc, char* argv[] ) 
{ 
   std::string filename( "808kick.wav" ), api( "Subsynth" ); 
    
   if (!snxFileIO::fileExists( filename.c_str() )) 
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   { 
      std::cout << "File not found: " << filename << "\n" << std::flush; 
      return 0; 
   } 
 
   // start sonix using Subsynth 
   sonix::instance()->changeAPI( api ); 
       
   // fill out a description for the sound we want to play 
   snx::SoundInfo sound_info; 
   sound_info.filename = filename; 
   sound_info.datasource = snx::SoundInfo::FILESYSTEM; 
 
   // create the sound object 
   snx::SoundHandle sound_handle; 
   sound_handle.init( "my simple sound" ); 
   sound_handle.configure( sound_info ); 
    
   // trigger the sound 
   sound_handle.trigger(); 
   sleep( 1 ); 
 
   // trigger the sound from a different position in 3D space... 
   sound_handle.setPosition( 10.0f, 0.0f, 0.0f ); 
   sound_handle.trigger(); 
   sleep( 1 ); 
 
   // this simulates a running application... 
   while (1) 
   { 
      sonix::instance()->step( time_delta );     
   } 
 
   return 1; 
} 

Listing 6.  Example C++ program that uses Sonix to play a sound using Subsynth.  

Sonix Architecture and Design 

Sonix was designed to be very simple to use, while offering useful features to general VE 

applications that need sound.  In Figure 37 we see the API for Sonix. The main parts that a 

programmer will use are shown, namely the snx::SoundHandle class, and the sonix 

singleton class. The sonix singleton class is used to start, stop and reconfigure the sound 

system. The snx::SoundHandle class is used to manipulate individual sounds. Both classes 

must be used for any sound to be heard.  
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Figure 37. UML diagram of the Sonix application programming interface (API). 

Starting the Sonix system is easy (see Listing 7).  The call needed to start the system is 

changeAPI(). Currently OpenAL, AudioWorks, and Subsynth toolkits are supported by 

Sonix.  To select one for use, one of the strings “OpenAL”, “AudioWorks”, or “Subsynth” is 

passed to changeAPI(). 

sonix::instance()->changeAPI( "Subsynth" ); 

Listing 7.  Code to startup and initialize Sonix to use the Subsynth audio subsystem. 

Sonix was designed using design patterns and an object-oriented approach (Figure 38).  

When designing Sonix, we used many design patterns that were appropriate to a simple audio 

system [GameGems2].  They are as follows: 

• Adapter (snx::SoundImplementation). This adapter provides a common 

interface to the underlying sound API.  

• Prototype (snx::SoundImplementation). Making 

snx::SoundImplementation a Prototype allows a new cloned object to be 

created from it that has duplicate state. 

http://www.vrjuggler.org/sonix/0.0.3/programmer.guide/
http://www.vrjuggler.org/sonix/0.0.3/programmer.guide/
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• Plugin Store (snx::SoundFactory). Each sound implementation is registered with 

a Store called snx::SoundFactory. This Store allows users to select items from its 

inventory. Another name for Store is "Abstract Factory". 

• Abstract Factory (snx::SoundFactory). The Store can create new instances of the 

requested sound implementation. The Abstract Factory consults its Store of registered 

objects, and if found, makes a clone of that object (Prototype pattern). The Abstract 

Factory is used in Sonix to configure the Bridge.  

• Bridge (sonix interface class and snx::SoundImplementation). The sonix 

class is the audio system abstraction which is decoupled from its implementation 

snx::SoundImplementation. This way the two can vary independently. Bridge 

also facilitates run-time configuration of the sound API. 

• Proxy (std::string and snx::SoundHandle). snx::SoundHandle is how 

users manipulate their sound object. snx::SoundHandle is actually a proxy to a 

std::string proxy. The std::string Proxy is what allows Sonix 

reconfiguration of resources. Rather than using pointers which can easily be left to 

dangle, the std::string serves as a lookup for a protected sound resource located 

internally to the Sonix tool. The snx::SoundHandle wraps this std::string to 

provide a simple and familiar C++ object to use as the sound handle. The sonix class 

acts as Mediator between every Proxy method and the actual audio system Adapter. 
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Figure 38.  The Sonix sound object system [UML]. 

Sonix supports the selection of several audio subsystems by the application through 

implementation plug-ins (Figure 39). Each plug-in implements an adapter to an underlying audio 

subsystem. The adapter supports a common interface that Sonix knows how talk to. Each adapter 

is then registered with a factory object, which may ask that adapter to clone itself for use by 

whoever called the factory. 
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Figure 39.  Sonix plugins. 

Sonix is an effective tool currently in use by several people at the Virtual Reality 

Applications Center and by other people external to the center who use the open source VR 

Juggler toolkit.  In the next chapter we evaluate Subsynth’s effectiveness as a subsystem for 

audio synthesis, and how it measures up to our specified requirements. 
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CHAPTER 7 DISCUSSION OF RESULTS 

Benefits 

Subsynth has been tested in a small range of applications and it shows good promise as an 

interactive audio subsystem on which higher-level applications can be based.  We have used 

Subsynth in a virtual environment to sonify events with no perceivable change in graphics frame 

rate or other critical aspects.  We have also used Subsynth as the synthesizer backend for MIDI 

music, and it performs well.  In other words, it meets the following criteria for MIDI: 

• Correct pitch for each note is produced. 

• Music events occur in a timely and consistent manner, which is very important to 

accurately reproduce music. 

• Voice polyphony of arbitrary number is supported to produce the effect that many 

instruments are playing together. 

• Dynamic range of volume in response to the MIDI velocity parameter. 

• Correct timbre that sounds qualitatively “good” to our ear. 

Qualitatively, SubsynthMIDI sounds similar to the results produced by a range of other 

commercial synthesizers. 

We have also used Subsynth to build simple sound objects upon in the Sonix toolkit.  Sound 

quality and performance of Subsynth here matches usage of similar tools such as OpenAL.  

Factors that were noticed were sound quality during pitch bending, frequency filtration, and 

dynamic range of volume control. 

For our last test of Subsynth we have used SubsynthMIDI in the G.A.M.E. toolkit for a new 

type of scientific sonification based on continuously generating music driven by data.  In the 

future the G.A.M.E. toolkit may benefit from using Subsynth directly for access to more control 

parameters than offered by MIDI.  Currently results in G.A.M.E. with SubsynthMIDI sound 

similar to using hardware MIDI directly. 
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Since Subsynth is portable to most computing systems, using MIDI sysex becomes portable.  

It becomes an option because we can rely on this proprietary feature of MIDI (tied to Subsynth), 

without worry of it not being available.  This is a problem when using proprietary or hardware 

synthesizers that are not available at every location where the application is run.   

Limitations 

Proportional to the size of the configured graph, Subsynth requires a percentage of processor 

power.  Previous hardware synthesis solutions operated in external hardware, and did not affect 

the main CPU.  This is a factor to be considered, but we do not see it as a major limitation.  

Subsynth could be run on a second computer, or on a separate processor in a multi CPU 

machine.  We see the option of running Subsynth in parallel with the main application on the 

same CPU as an option, not a necessity.  This option is valuable because it makes the running of 

an audio synthesis application potentially easier given that the host CPU can provide enough 

processing power.  For the case studies we presented in this thesis, we found a Pentium III 

500Mhz to be too slow to support Subsynth and a graphical OpenGL application at the same 

time.  Meanwhile, we found a Pentium 4 dual 1.5Ghz system to be very adequate to this task.  

These results were observed with Subsynth compiled with non-optimized code and debugging 

symbols included.  Obviously, the processor requirements have room for decrement once 

Subsynth is optimized. 

While running Subsynth concurrently with the main application may be an immediate 

shortcoming on some systems, we do not see this as a long-term problem since future machines 

will be faster.  This means that the percentage of the Subsynth processor usage will continuously 

decrease until it is acceptable by the most demanding applications.  In addition, given the 

possibility to run Subsynth on separate processors, or even separate computers, the application 
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performance hit returns back to the optimal state to be had when hardware synthesizers were 

used. 

A part of Subsynth that needs optimization is the parallel processing runner component in 

Subsynth.  It operates adequately when the number of threads is under the number of processors 

in the machine, but currently consumes too much CPU due to context switches.  Work should be 

done to minimize thread context switches due to sleeps or yields since they have shown a lot of 

overhead in our testing.  Figure 40 shows our measurements during testing of this phenomenon 

where, on a Pentium 4 1.5 Gz processor, the time to yield() was about 0.02 sec.  This time 

overhead affects time critical code such as streaming of audio to the hardware, or timely 

scheduling of music events for control of the audio synthesizer. 

Several hundred time measurements of the yield() function on 
a dual processor Pentium 1.5 Gz
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Figure 40.  Time measurement of the yield() function. 
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CHAPTER 8 CONCLUSION 

The goal of this work was to address the generality, scalability, and portability problems 

associated with user-level applications needing real-time audio synthesis.  The user-level 

application domains we specifically addressed were virtual environments, scientific sonification, 

and real-time interactive music for composition and performance.  We reviewed existing audio 

synthesis tools, many which of were limited by being too specialized or not portable enough.  

After this review work, we determined that a new tool was needed.  We developed Subsynth, a 

generic audio synthesis framework for real-time applications.  This new tool is meant to enable 

scalability and portability in higher-level applications and tools that need access to audio 

synthesis capabilities. 

This thesis illustrates the feasibility of developing a generically configurable audio synthesis 

toolkit that meets the needs of several application domains including virtual environments, 

interactive composition and performance, and scientific sonification.  Subsynth addresses the 

requirements we have set out for a generic audio synthesis subsystem that would be useful to 

these real-time interactive applications.  Configurability is addressed in the design of the 

Module, Terminal, Connection framework that allows connection and control of modules in any 

way.  Extendibility is possible in the Subsynth design including the unit generator framework, 

execution environment, and configuration system.  Portability is addressed since Subsynth 

makes use of cross platform tools and otherwise uses only C++ compliant code.  Our case 

studies showcase that Subsynth has useful synthesis methods, exhibits real-time interactivity, 

and provides an interface that promotes intuitive control by the application.  Because it is 

implemented in software, Subsynth offers a way to get the same consistent sound across a 

variety of computing systems.  In addition, the tool can be upgraded transparently by simply 

running it on a computer with more, or more powerful, processors—something not available 
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from most hardware synthesizers.  As a proof of concept, Subsynth meets our requirements 

expectations.  As an actual tool, the current status of Subsynth allows it to be usable in a good 

range of applications, although additional work is required to finalize the implementation of the 

complete range of features. The next chapter discusses the potential directions, both conceptual 

and practical, that Subsynth can take. 



100

CHAPTER 9 FUTURE WORK 

Subsynth is intended as a long-term research project, which will eventually find its way into 

a number of virtual reality and multimedia applications. As such, there are a number of 

directions for future research. 

Subsynth needs optimization work done on the multithreading runner.  The runner needs a 

scheduler that can order the task operations more optimally, based on graph dependency and 

watermarking needs.  This sort of work could involve some kind of dynamic scheduler, rather 

than the included static Scheduler design.   

Subsynth should provide more unit generators.  Particularly lacking are good low-, high-, 

and band-pass filters.  Although Subsynth has acceptable low- and high-pass filters, they are not 

of good quality and could be improved.  For virtual environments, Subsynth especially needs 

filters for echo and 3D spatialization.  For interactive music and sonification, delay and 

distortion filters could be useful.  An authoring tool for instruments would be a useful and short-

term project idea to introduce a student to audio synthesis and GUI programming.  Additionally, 

the unit generators need optimizations, such as reducing the number of conditionals that are 

within inner loops, processing control signals at a reduced rate, and optimizing mathematical 

functions such as sine and exponential calculation using approximations such lookup tables or 

processor tricks. 

Currently, the Subsynth MIDI implementation is very basic allowing simple MIDI 

interaction such as pitch, velocity, and trigger.  Access to many more parameters is possible 

through MIDI sysex, and MIDI control messages.  Since Subsynth is portable to most computing 

systems, using sysex becomes an option because we can rely on this proprietary feature of MIDI 

(tied to Subsynth) without worry of it not being available.   
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Finally, more applications need to be written on top of Subsynth to promote development 

and to work out functionality and usability flaws.  Obvious application types include those from 

the domains laid out in the requirements section.  Additionally, we have some specific ideas of 

research tools that we particularly feel would be interesting to develop with Subsynth: 

• Modulation Synthesis Parameter Selection Using Brute Force Techniques:  

Earlier, we explained how modulation synthesis could be used to create very simple 

instruments that yield very complex sound.  The drawback with this technique, as 

we explained, was that that the parameters to specify the modulation synthesis 

instrument are unintuitive and hard to get right.  Therefore, we feel that it would be 

interesting to use the brute-force techniques described by the field of artificial-life 

[Ashlock02]. These techniques have the ability to evolve the parameters of 

modulation synthesis instruments in a controlled way to converge upon an optimal 

solution.  This best solution would allow us to achieve a closer match to real world 

instruments using these computationally inexpensive unit generators.  We 

hypothesize that the fitness function could be based on the spectra (frequencies) 

found in the source and destination waveforms. 

• Visual Authoring Tools for Synthesis Networks: With the interactive realities 

becoming more available to average consumers through console gaming systems and 

more advanced VR systems, authoring tools will become necessary for people to 

customize “their piece of the Internet.”  This is similar to how HTML and web 

browsers have enabled mass participation with the current Internet.  With access to 

more advanced equipment for less money, there will be a growing need to improve 

interaction techniques with virtual worlds.  One especially useful application will be 

simple intuitive authoring tools that offer these powerful manipulation techniques 
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[RealtimeVR][Otherland].  Sound will be a part of these authoring tools.  Users will 

need to set up a range of sonification methods from this tool.  Primarily, it should 

support creation of sounds and the ability to link them to triggers placed in the 

virtual environment.  Sound attributes such as frequency, volume, and timbre, 

should be available to modify and link to other triggers.  Specific sound and music 

research tools could also be made.  Subsynth provides a very flexible audio backend 

to support these needs.  It would be interesting to use Subsynth to enable some of 

these virtual environment authoring tools. 

In summary, there is much potential to build upon a generic audio synthesis tool such as 

Subsynth.  A tool such as this could open the door to many research topics while remaining a 

very generic audio toolkit that creative applications could exploit. 
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Appendix A 
;****************************************************************** 
instr 1   ; Table Based Rezzy Synth  
          ; [from http://www.csounds.com/mikelson/ (6.6.2002)] 
 
idur   = p3 
iamp   = p4 
ifqc   = cpspch(p5) 
irez   = p7 
itabl1 = p8 
 
; Amplitude envelope 
kaenv  linseg 0, .01, 1, p3-.02, 1, .01, 0 
 
; Frequency Sweep 
kfco linseg .1*p6, .5*p3, p6, .5*p3, .1*p6 
 
; This relationship attempts to separate Freq from Res. 
ka1 = 100/irez/sqrt(kfco)-1 
ka2 = 1000/kfco 
 
; Initialize Yn-1 & Yn-2 to zero 
aynm1 init 0 
aynm2 init 0 
 
; Oscillator 
  axn oscil iamp, ifqc, itabl1 
 
; Replace the differential eq. with a difference eq. 
  ayn = ((ka1+2*ka2)*aynm1-ka2*aynm2+axn)/(1+ka1+ka2) 
  aynm2 = aynm1 
  aynm1 = ayn 
 
; Amp envelope and output 
  aout = ayn * kaenv 
  out aout 
 
endin 

Listing 8.  Example of an instrument defined in CSound’s instrument definition scripting 
language. 

( 
// synthetic piano 2: from www.audiosynth.com (6.6.2002) 
var n, keynote; 
n = 6; // number of keys playing 
keynote = 12.rand; 
Synth.play({ 
 var z; 
 z = Mix.arFill(n, { // mix an array of notes 
  var delayTime, pitch, detune, strike, hammerEnv, hammer; 
   
  // calculate delay based on a random note 
  pitch = [0,2,4,5,7,9,11].choose + [0,12,24,36].choose + 36 + keynote; 
  strike = Dust.ar(0.2+0.4.rand, 0.1); // random period for each key 
  hammerEnv = Decay2.ar(strike, 0.008, 0.04); // excitation envelope 
  Pan2.ar( 
   // array of 3 strings per note 
   Mix.ar(Array.fill(3, { arg i; 
    // detune strings, calculate delay time : 
    detune = #[-0.05, 0, 0.04].at(i); 
    delayTime = 1 / (pitch + detune).midicps; 

http://www.csounds.com/mikelson/
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    // each string gets own exciter : 
    hammer = LFNoise2.ar(3000, hammerEnv); // 3000 Hz was chosen by ear.. 
    CombL.ar( hammer,      // used as a string resonator 
              delayTime,   // max delay time 
              delayTime,   // actual delay time 
              6 )          // decay time of string 
   })), 
   (pitch - 36)/27 - 1 // pan position: lo notes left, hi notes right 
  ) 
 }); 
 4.do({  
  z = AllpassN.ar(z, 0.040, [0.040.rand,0.040.rand], 8)  
 }); 
 z 
}) 
) 
( 
// synthetic piano 3 
var n, keynote; 
n = 10; // number of keys playing 
keynote = 12.rand; 
Synth.play({ 
 var z; 
 z = Mix.arFill(n, { // mix an array of notes 
  var delayTime, pitch, detune, strike, hammerEnv, hammer; 
   
  // calculate delay based on a random note 
  pitch = [0,2,4,5,7,9].choose + [0,12,24,36].choose + 36 + keynote; 
  strike = Dust.ar(0.1+0.2.rand, 0.1); // random period for each key 
  hammerEnv = Decay2.ar(strike, 0.015, 0.04); // excitation envelope 
  Pan2.ar( 
   // array of 3 strings per note 
   Mix.ar(Array.fill(3, { arg i; 
    // detune strings, calculate delay time : 
    detune = #[-0.05, 0, 0.04].at( i ); 
    delayTime = 1 / (pitch + detune).midicps; 
    // each string gets own exciter : 
    hammer = LFNoise2.ar( 3000, hammerEnv ); // 3000 Hz was chosen by 
ear.. 
    CombL.ar( hammer,      // used as a string resonator 
              delayTime,   // max delay time 
              delayTime,   // actual delay time 
              6 )          // decay time of string 
   })), 
   (pitch - 36)/27 - 1 // pan position: lo notes left, hi notes right 
  ) 
 }); 
 6.do({  
  z = AllpassN.ar(z, 0.040, [0.040.rand,0.040.rand], 8)  
 }); 
 z 
}) 
) 

Listing 9.  Example of a SuperCollider script. 
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<?xml version="1.0"?> 
<instruments> 
   <instrument name="wave sample player"> 
      <module type="WaveTableOsc" name="Tone"> 
         <setparam name="filename" value="snare-singleshot.wav"/> 
         <setparam name="samplebased" value="1"/> 
         <setparam name="basefreq" value="440"/> 
         <setparam name="loop" value="0"/> 
         <setparam name="interp" value="1"/> 
         <setparam name="retrig" value="1"/> 
         <setparam name="freq" value="440"/> 
         <setparam name="freqcontrol" value="1"/> 
         <setparam name="freqcontrolsens" value="1"/> 
         <setparam name="trigger" value="1"/> 
      </module> 
      <module type="AdsrEnv" name="ADSR1"/> 
      <module type="Mult" name="Mult1"/> 
      <module type="Mult" name="Atten"/> 
 
      <connection> 
         <output name="mono audio" module="Tone"/> 
         <input name="mono audio0" module="Mult1"/> 
      </connection> 
      <connection> 
         <output name="mono audio" module="ADSR1"/> 
         <input name="mono audio1" module="Mult1"/> 
      </connection> 
      <connection> 
         <output name="mono audio" module="Mult1"/> 
         <input name="mono audio0" module="Atten"/> 
      </connection> 
 
      <exposeoutput name="mono audio"> 
         <output name="mono audio" module="Atten"/> 
      </exposeoutput> 
 
      <exposeparam name="velocity"> 
         <param name="constant" module="Atten"/> 
      </exposeparam> 
      <exposeparam name="freq"> 
         <param name="freq" module="Tone"/> 
      </exposeparam> 
      <exposeparam name="freqcontrol"> 
         <param name="freqcontrol" module="Tone"/> 
      </exposeparam> 
      <exposeparam name="freqcontrolsens"> 
         <param name="freqcontrolsens" module="Tone"/> 
      </exposeparam> 
      <exposeparam name="trigger"> 
         <param name="trigger" module="ADSR1"/> 
         <param name="trigger" module="Tone"/> 
      </exposeparam> 
   </instrument> 
</instruments> 

Listing 10.  An example of a Subsynth instrument definition file. 



106

Appendix B 
namespace ac 
{ 
   struct InIsLarger 
   {   
      template <typename _in, typename _out> 
      static void execute( const _in& i, _out& o ) 
      {  
         const _in in_range = (_in)(((float)audio_data_traits<_in>::range) 
/  
                                                              (float)4); 
         const _in in_min = (_in)audio_data_traits<_in>::min; 
         const _out out_range =   
             (_out)(((float)audio_data_traits<_out>::range) / (float)4); 
         const _out out_min = (_out)audio_data_traits<_out>::min; 
          
         // offset by <in>::min, then scale, then offset back by 
<out>::min 
         const _in scale = ((_in)out_range) / in_range; 
         const _in inv_scale = in_range / ((_in)out_range); 
         if (scale != 0.0) // float to int (float mult, 2 adds) 
            o = (_out) (((i - in_min) * scale) + out_min); 
         else              // 16 to 8 bit (shift right, 2 adds) 
            o = (_out) (((i - in_min) / inv_scale) + out_min); 
      } 
   }; 
 
   struct OutIsLarger 
   {   
      template <typename _in, typename _out> 
      static void execute( const _in& i, _out& o ) 
      {  
         const _in in_range = (_in)(((float)audio_data_traits<_in>::range) 
/  
                                             (float)4); 
         const _in in_min = (_in)audio_data_traits<_in>::min; 
         const _out out_range =  
                (_out)(((float)audio_data_traits<_out>::range) / 
(float)4); 
         const _out out_min = (_out)audio_data_traits<_out>::min; 
          
         const _out scale = out_range / ((_out)in_range); 
         SYN_STATIC_ASSERT( scale != (_out)0.0 ); 
 
         // 8 to 16 bit conversion (shift left, 2 adds) 
         // integer to float (float mult, 2 float adds) 
         o = (_out) (((i - in_min) * scale) + out_min); 
      } 
   }; 
 
   struct Adjust  
   {   
      template <typename _in, typename _out> 
      static void execute( const _in& i, _out& o )  
      { 
         if (i >= 0.9999f)  
            o -= (_out)1; 
      }  
   }; 
 
   struct DoNothing 
   {   
      template <typename a, typename b> 
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      static void execute( a aa, b bb ) {} 
   }; 
 
   struct Copy  
   {   
      template <typename _in, typename _out> 
      static void execute( const _in& i, _out& o ) { o = (_out)i; }  
   }; 
   // some flags needed by audio_convert 
   template <typename in, typename out> 
   struct Flags 
   {   
      // are the two datatypes the same? 
      static const bool types_are_the_same; 
 
      // is the 1st one float and the 2nd one int? 
      static const bool float_to_int; 
   }; 
       
   // until type_info::operator==() works statically,  
   // this will have to do... 
   template <typename in, typename out> 
   const bool Flags<in,out>::types_are_the_same =  
      audio_data_traits<in>::max == audio_data_traits<out>::max; 
          
   template <typename in, typename out> 
   const bool Flags<in,out>::float_to_int =  
      audio_data_traits<in>::range == audio_data_traits<float>::range &&  
      audio_data_traits<out>::range != audio_data_traits<float>::range; 
}    
 
/** convert one audio sample to a sample of a different format 
 *  currently works for any type of data supported by audio_data_traits. 
 */  
template <typename in, typename out> 
inline void audio_convert( const in& i, out& o ) 
{ 
   // in == out: Copy,  in > out: InIsLarger, out > in: OutIsLarger 
   meta::IF<ac::Flags<in,out>::types_are_the_same, ac::Copy,  
      /*else*/ meta::IF<sizeof( in ) >= sizeof( out ), ac::InIsLarger,  
      /*else*/ ac::OutIsLarger>::RET > 
      ::RET::execute( i, o ); 
       
   // degenerate case: converting float(1.0) to int yields 0 (incorrect), 
fix 
   meta::IF<ac::Flags<in,out>::float_to_int, ac::Adjust,  
      /*else*/ ac::DoNothing> 
      ::RET::execute( i, o ); 
} 

Listing 11.  Template metaprogramming audio format conversion routine. 
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Appendix C 
<?xml version="1.0" ?> 
<!DOCTYPE article PUBLIC "-//vrac//lsystem V0.1.2//EN" 
  "http://www.vrac.iastate.edu/~kevn/lsystem.dtd"> 
<root> 
   <lsystem> 
      <axiom> 
         <lstring> 
            <!-- strings are composed of elts, not characters 
                 an "elt" is a sort of "super character". 
              --> 
            <elt name="TEMPO"> 
               <param id="0">0</param> 
               <param id="1">${cg}</param> 
            </elt> 
            <elt name="DUR"> 
               <param id="0">0</param> 
               <param id="1">${cg}</param> 
            </elt> 
            <elt name="PROGCHANGE"> 
               <param id="0">0</param> 
               <param id="1">0</param> 
               <param id="2">25</param> 
            </elt> 
            <elt name="NOTE"> 
               <param id="0">0</param> 
               <param id="1">60</param> 
               <param id="2">0</param> 
               <param id="3">0.7</param> 
            </elt> 
            <elt name="NOTE"> 
               <param id="0">${DUR}</param> 
               <param id="1">60</param> 
               <param id="2">0</param> 
               <param id="3">0</param> 
            </elt> 
            </lstring> 
      </axiom> 
      <!-- define replacement rules --> 
      <rules> 
         <rule type="exact"> <!-- can specify regex or exact matching --> 
            <!-- for every place in the base string that matches this --> 
            <match> 
               <lstring> 
                  <elt name="NOTE"> 
                     <param id="0">0</param> 
                     <param id="1">62</param> 
                     <param id="2">0</param> 
                     <param id="3">${t}</param> 
                  </elt> 
                  <elt name="NOTE"> 
                     <param id="0">${DUR}</param> 
                     <param id="1">62</param> 
                     <param id="2">0</param> 
                     <param id="3">0</param> 
                  </elt> 
               </lstring> 
            </match> 
<!-- ...replace it with this -->    
            <replace> 
               <lstring> 
                 <elt name="DUR*"> 
                     <param id="0">0</param> 
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                     <param id="1">0.5</param> 
                  </elt> 
                  <elt name="NOTE"> 
                     <param id="0">0</param> 
                     <param id="1">62</param> 
                     <param id="2">0</param> 
                     <param id="3">${t}</param> 
                  </elt> 
                  <elt name="NOTE"> 
                     <param id="0">${DUR}</param> 
                     <param id="1">62</param> 
                     <param id="2">0</param> 
                     <param id="3">0</param> 
                  </elt> 
                  <elt name="NOTE"> 
                     <param id="0">0</param> 
                     <param id="1">58</param> 
                     <param id="2">0</param> 
                     <param id="3">${a}</param> 
                  </elt> 
                  <elt name="NOTE"> 
                     <param id="0">${DUR}</param> 
                     <param id="1">58</param> 
                     <param id="2">0</param> 
                     <param id="3">0</param> 
                  </elt> 
                  <elt name="DUR*"> 
                     <param id="0">${a}</param> 
                     <param id="1">2</param> 
                  </elt> 
               </lstring> 
            </replace> 
         </rule> 
      </rules> 
   </lsystem> 
</root> 

Listing 12.  Example music L-system, using the L-system XML schema specified by 
G.A.M.E. 
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